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Abstract

Statistical shape models play a key role in medical image analysis, e.g., for hypothesis

testing, object segmentation and shape clustering. Several approaches to shape modeling,

e.g., diffeomorphic deformation models, medial models, point distribution models, etc.,

are active research areas in their own right, each with its benefits and limitations. Chal-

lenges to current model learning schemes stem from many factors including (i) inevitable

human errors in segmentation, where the individual shape models may overfit to the errors

and lead to inflated group variability, and (ii) low sample sizes for groups, where the group

distribution model may overfit and incorrectly indicate reduced group variability. We pro-

pose to address these issues, in the context of learning point distribution models, through

(i) a novel generative model of the data that accounts for human errors in segmentations,

(ii) a novel hierarchical model that regularizes group-distribution fits using population-

level shape variables, and (iii) Riemannian analysis in Kendall shape space. We propose

a novel method for sampling shapes from distributions in Kendall shape space, and lever-

age that for inference using Monte-Carlo expectation maximization. We propose a deep

neural net based object segmentation incorporating a novel Riemannian shape prior with

a novel inference method. We also propose to address these issues, in context of learning

a multi-modal point distribution model for shape clustering, through (i) a novel generative

mixture model of the data that accounts for human errors in segmentations, (ii) a novel

hierarchical mixture model that regularizes group-distribution fits using population-level

shape variables, and (iii) Riemannian analysis in Kendall shape space. The results show

some benefits of our framework in hypothesis testing, object segmentation and shape

clustering on simulated and clinical datasets.
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Chapter 1

Introduction

Statistical shape models play a key role in a variety of applications in medical image

analysis. Generative statistical shape models are important because they rely on shape

representations that can lead to visualizations of individual shapes, group average shapes,

or the modes of shape variation within groups. Such visualizations typically enhance the

interpretability of the results underlying the study, which can provide insights to the med-

ical experts. Applications where generative shape models play an important part include

testing for differences in the distributions of shapes in two groups, segmenting objects in

images, clustering a population of shapes into groups, etc. Hypothesis testing between

groups of object shapes becomes challenging when the data from multiple groups have

subtle differences that can get camouflaged when the learned statistical shape models are

non-compact (depicting inflated variability) or when the model learning overfits to the

(inevitable) corruptions in the data in the form of image noise or human errors in ob-

ject segmentations. In such cases, (i) corruption-aware learning strategies, which can

help infer the true shapes underlying the corruptions, (ii) Riemannian analysis, which

can adapt to the nonlinear manifold structure underlying the true shapes, and (iii) hier-

archical modeling, which can help regularize model fits, together have the potential to

reduce overfitting and provide reliable compact per-group models that inform the inter-

group differences. Object segmentation in medical images becomes challenging when

the data differentiates poorly between the object and its surroundings, e.g., because of

low contrast, blur, imaging noise, motion artifacts, etc. In such cases, information from

a learned statistical (prior) model of object shapes can be crucial for accurate segmenta-

tion. Shape Clustering of population of shapes of particular medical organ is challenging

when shapes are not well registered or landmarks are not provided. In such case, fitting a

hierarchical mixture model of shapes directly to the population helps us getting accurate

clusters without much of prior knowledge.

1



1.1 Shape Modeling Approaches and Applications 2

1.1 Shape Modeling Approaches and Applications

Statistical shape analysis can rely on several different modeling strategies, such as

(i) boundary point distribution models (Kendall (1989); Cootes et al. (1995); Freifeld

& Black (2012)), (ii) nonlinear dense diffeomorphic warps (Leventon et al. (2000); Glas-

bey & Mardia (2001); Vaillant & Glaunes (2005); Durrleman et al. (2009); Allassonniere

et al. (2010); Durrleman et al. (2014); Zhang et al. (2017); Bone et al. (2018)), (iii) medial

models (Fletcher et al. (2004); Siddiqi & Pizer (2008); Pouch et al. (2015)), (iv) spherical

harmonics (SPHARM) based parameterization (Gerig et al. (2001)), or (v) implicit mod-

els (Tsai et al. (2003); Dambreville et al. (2008); Chen & Radke (2009)). All these mod-

eling approaches continue to be active areas of research in their own right. Models based

on distance transforms efficiently handle topology changes, but the statistical analysis in

the space of distance transforms presents several challenges regarding defining, comput-

ing, and visualizing the means and modes of variation. Medial models and warp-based

models represent shape as an equivalence class of object boundaries and lead to statistical

analyses in the associated Riemannian shape spaces. While medial representations are

typically limited to non-branching genus-0 objects, methods based on diffeomorphisms

involve very large dimensional Riemannian spaces where the analysis can be expensive

and challenged by noise and limited sample sizes of training data (Pizer et al. (2012)). On

the other hand, boundary point distribution models can succinctly represent shapes, and

we extend these models for hierarchical modeling in a Riemannian shape space, namely

Kendall shape space, and we formulate the model learning to adapt to the corruption in

the data. This work shows the benefits of our proposed modeling and inference scheme

for hypothesis testing, Bayesian object segmentation and shape clustering.

Many methods for learning multigroup statistical shape models, e.g., (Terriberry

et al. (2005); Cates et al. (2007); Schulz et al. (2016)), first pool the data from multiple

groups to fit a single model that describes the variation across all groups, and then use

the correspondences learned in the first step to estimate parameters of the distribution for

each group. However, when data is naturally organized in groups, we employ partial

pooling through hierarchical modeling (Gelman (2006)) that leads to a unified model

whose inference leads to the joint estimation of (i) the optimal point correspondences

and (ii) the distribution parameters for each group. Hierarchical models offer benefits

including regularized model fits (e.g., for individual shapes or group-mean shapes) and

reduced risk of overfitting per-group distributions (e.g., when the sample size is small or

outliers are present) through shrinkage. In this work, we have quantitatively analyzed the

benefits of hierarchical modeling for point distribution modeling schemes.
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Object segmentation of any modality image in which object under consideration has

a well defined shape, then using this information becomes very important under noisy ac-

quisition, sparse acquisition, low resolution acquisition or combination of all three, which

are very common scenario in normal clinical imaging systems. Various object segmen-

tation method can be categorized into two major areas, as (i) curve or surface evolution

methods, which involve fitting curve or surface to the boundaries, defined by energy func-

tions (Cootes et al. (1995); Kass et al. (1988); Leventon et al. (2000)), (ii) labeling indi-

vidual pixel or patch in the image as part of object or not (Aljabar et al. (2009); Wang

et al. (2013a); Bai et al. (2013); Ronneberger et al. (2015)), which includes multi-atlas

and deep neural nets. It is well understood that while performing image segmentation

for an object with well defined shape, it is useful to incorporate shape information in the

method itself. Methods like (Leventon et al. (2000)) tries to embed shape information

in curve evolution itself to get improved performance. But from last few years, major-

ity of object segmentation literature focused on multi-atlas, deep neural-nets and random

forest (Wang et al. (2013a); Bai et al. (2013); Ronneberger et al. (2015); Badrinarayanan

et al. (2017); Cuingnet et al. (2012)). All three method mentioned previously do not model

shape explicitly. Recently many segmentation method based on deep neural-net incorpo-

rate data-driven shape information inside the model to improve performance (Ravishankar

et al. (2017); Oktay et al. (2018)). Unlike previously mentioned deep neural-nets, we used

formal definition of shape space (i.e. Kendall shape space) to define our distribution of

shapes. On the similar line with this work (Li et al. (2018)), which combines PCA-

based shape model with random forest segmentation, we have formulated a novel deep

neural-net segmentation using our shape prior in Riemannian shape space. we have also

quantitatively analyzed benefits of our shape prior for segmentation framework.

Along with object segmentation, clustering segmented object into set of categories

without or very less human intervention is a challenging task, especially because shape

of any medical entity under observation, always has complex and subtle information,

which need humongous human effort and training forest for categorizing them into de-

sired groups. Clustering set of data points into certain number of categories without su-

pervision, is an old problem which has been addressed by many useful algorithms upto

certain extent. Clustering algorithms can be categorized into two major areas, as (i) hard

boundary clustering, in which each data-point will be labeled exactly single category

(e.g. K-means, Graph-cut), (ii) soft boundary clustering, in which each data-point will be

labeled a set of probabilities or memberships related to respective categories in considera-

tion (e.g. Fuzzy C-means, Gaussian Mixture Model). Both areas has it’s own significance

in many applications. In our case, each data point is a shape representation from dataset
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which does not have so well separated categories. To address such a shape clustering

problem, we have formulated a novel Gaussian mixture model based hierarchical Rie-

mannian shape clustering model. We have also quantitatively analyzed benefits of our

model over state of the art shape clustering algorithm VBMixPCA (Gooya et al. (2018)).

1.2 Contributions

This work presents a novel framework for statistical shape analysis using point distribu-

tion models. In the context of pointset shape representations, we propose perhaps the first

hierarchical generative model for multigroup data. We design our model to handle human

errors in segmentations that are inevitable in practice. Together with Riemannian analy-

sis in Kendall shape space, our model aims to learn reliable and compact shape distribu-

tions. We propose a novel method for sampling shapes from distributions in Kendall shape

space, and use that for inference using Monte-Carlo expectation maximization (EM). We

propose a novel Bayesian method for object segmentation using shape priors. we have

formulated a shape prior using our Riemannian shape model, which can be incorporated

with state of the art methods like deep neural net based image segmentation and multi-

atlas based segmentation using our novel inference method. We propose a novel hierar-

chical Riemannian mixture clustering method for shape clustering. The results demon-

strate the benefits of our framework in hypothesis testing,object segmentation, and shape

clustering on simulated and clinical data. We have designed a simulated ellipsoids ex-

periments to show two benefits of hierarchical model, (i) regularizing effect of population

level variable, (ii) reducing false positives in hypothesis testing (shrinkage effect). For ap-

plications of hypothesis testing, we have fit our hierarchical Riemannian shape model to

two-group simulated ellipsoid’s noisy segmentation and clinical two-group ( male and fe-

male) carpel bone segmentations. Then we have performed hypothesis testing using our

novel test statistic on final estimated model. We have compared our hypothesis testing

results with state of the art shape model, ShapeWorks (SCI Institute (2013)). For applica-

tions of object segmentation, we have performed two types of experiments, (i) Simulating

MRI in which, we have simulated MRI like images from segmentations of ellipsoids and

carpel bones. Then we performed our shape prior based segmentation method extend-

ing multi-atlas based segmentation method (Bai et al. (2013)). We have compared our

results with state of the art shape model priors and pure multi-atlas based segmentation.

(ii) Clinical brain MRI in which, we have actual clinical brain MRI scans and respective

human-expert segmentation of sub-cortical structure is available. Then we performed our

shape prior based segmentation method extending Unet (a deep neural nets) (Ronneberger
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et al. (2015)) based segmentation method. We have compared our results with state of art

shape priors, pure multi-atlas and deep neural networks. For applications of shape clus-

tering, we have simulated three-group ellipsoid’s noisy segmentation with overlapping

group distributions. Then we estimated clusters using our hierarchical Riemannian mix-

ture clustering method. We have quantitatively compared our results with state of the art

shape clustering method, VBMixPCA (Gooya et al. (2018)).

1.3 Organization of Thesis

The rest of the report is organized as follows. Chapter 2 describes the related literature on

shape modeling for hypothesis testing, object segmentation and shape clustering. Chap-

ter 3 describes our methods for corruption-aware hierarchical Riemannian statistical shape

modeling, its inference algorithms, and its applications to hypothesis testing. Chapter 4

describes our novel test statistic and presents results of hypothesis testing for simulated

and clinical image data. Chapter 5 describes object segmentation using shape prior based

on our Riemannian statistical shape modeling and presents results of segmentation using

shape prior for simulated and clinical image data. Chapter 6 describes our newly designed

shape clustering model using Riemannian statistical mixture shape model, its inference al-

gorithms and presents results of shape clustering for simulated data. Chapter 7 concludes

the thesis.



Chapter 2

Background and Related Work

This chapter describes the literature on shape modeling related to single group and multi-

group dataset and discusses it’s application to image segmentation, hypothesis testing and

shape clustering. It also places the contributions in this report within that context.

2.1 Shape Modeling with Diffeomorphism

Some pioneering works on shape analysis through diffeomorphisms on images model

nonlinear warps as latent variables (Allassonniere et al. (2007, 2010)). They treat the

segmentation as error free. On the other hand, we model individual shapes as latent vari-

ables (treating data-to-shape similarity transforms as parameters) and allow for errors in

segmentations. Nevertheless, (Allassonniere et al. (2007, 2010)) do not use a hierarchi-

cal model for multigroup data. Some recent approaches use hierarchical models in the

context of nonlinear mixed-effect models to model longitudinal shape data in the space of

diffeomorphisms on intensity images (Bone et al. (2018)). Another recent work (Zhang

et al. (2017)) proposes an efficient probabilistic model of anatomical variability in a lin-

ear space of initial velocities of diffeomorphic transformations. It models principal modes

as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited

space. In the context of hypothesis testing, methods based on diffeomorphisms involve

very large dimensional Riemannian spaces, where the analysis can be expensive and chal-

lenged by noise and limited sample sizes of training data (Pizer et al. (2012)). On the other

hand, pointset based shape representations typically model shapes in spaces that are much

smaller dimensional.

6
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2.2 Shape Modeling with Medial Models

Recent advances in medial representations of shape, e.g., the s-rep (Pizer et al. (2013);

Hong et al. (2016); Tu et al. (2018)), improve over traditional medial models (Siddiqi &

Pizer (2008)). While medial models have been popular for segmentation, they continue

to be best suited to non-branching objects; a recent work (Pouch et al. (2015)) applies

continuous medial models to segment the branching structure of the aortic value, in a

first such application. In contrast, point distribution models are applicable to various

topologies, including multi-object complexes where the joint model can represent modes

of joint variation across the objects in the complex. While some skeletal models infer

modes of variation through composite principal nested spheres, we represent the modes

of variation as eigenvectors of a covariance matrix in the tangent space of Kendall shape

space at the estimated Frechet mean, by leveraging an extension of the Normal law on

Riemannian manifolds (Pennec (2006)) to shape space. The focus in this work is on

hierarchical (pointset-based) shape models that are aware of the corruptions in the data,

for use in hypothesis testing, object segmentation and shape clustering.

2.3 Shape Modeling with Mixture Models

Very few works including (Gooya et al. (2018)) actually models shape space using mix-

ture models. Mixture models has special importance when it comes to learning categories

in unsupervised way. Unsupervised learning deals with learning patterns in unlabeled

data through various methods, including clustering, density estimation, and latent vari-

able models involving principal component analysis (PCA) and expectation maximization

(EM). In case of clustering unlabeled data, Gaussian mixture models (GMMs) (Reynolds

(2015); Rasmussen (2000)) have shown state-of-the-art performance in various domains,

e.g., speech and text (Reynolds & Rose (1995); Reynolds et al. (2000)), image analysis

and vision (Permuter et al. (2006); Greenspan et al. (2006); Zivkovic (2004)), etc. GMMs

belong to a class of nonparametric probability density functions that can estimate complex

densities as (weighted) superposition of multivariate Gaussian distributions. By using a

sufficient number of Gaussians, and by proper adjustment of their respective parameters,

almost any continuous density can be approximated to arbitrary accuracy (Nguyen &

McLachlan (2018)).
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2.4 Application: Hypothesis Testing using Shape

distribution

Hypothesis testing using shape distributions has a long history in the contexts of medial

models (Terriberry et al. (2005); Schulz et al. (2016)), point distribution models (Cates

et al. (2008)), diffeomorphism based models (Durrleman et al. (2014); Joshi et al. (2016)),

or contour representations (Hagwood et al. (2013)). Approaches based on constrained

nonlinear deformations, e.g., constrained to be sufficiently smooth, invertible, inverse-

consistent, etc., capture shape changes between objects in the combination of (i) the de-

formation and (ii) the residual inter-object mismatch modulo the random noise. On the

other hand, our method, like many point distribution models, allows only similarity trans-

forms on objects and thereby capture shape changes between objects using only the resid-

ual inter-object mismatch. In this way, our approach entails hypothesis testing in a much

lower-dimensional space of pointsets, compared to the space of dense diffeomorphisms.

We show that our pointset based hierarchical model, which models the corruptions in the

data, performs better than the popular pointset based modeling scheme in (Cates et al.

(2007); SCI Institute (2013)).

2.5 Application: Object Segmentation

There are many applications of active shape models (ASMs) for image segmenta-

tion (Heimann & Meinzer (2009)), including a recent one for 2D segmentation in car-

diac ultrasound (Li et al. (2018)). A major limitation of the ASM scheme is the need for

manual placement of landmarks, which is laborious and often infeasible for 3D objects

having non-trivial shapes. Later methods for shape-model based segmentation (Tsai et al.

(2003); Dambreville et al. (2008); Chen & Radke (2009)) rely on the level-set framework

that represents object boundaries without the need for landmarks and has the ability to

handle topological changes with ease. (Tsai et al. (2003)) relies on principal component

analysis (PCA) on signed distance transforms of level sets, which represent object bound-

aries. Recently, (Veni et al. (2017)) uses graph cuts to impose local and global shape

priors, where the latter uses distance transforms. However, the space of signed distance

transforms is a nonlinear manifold and the linear combinations underlying PCA can fail to

produce valid or useful shapes. To improve over linear PCA, (Dambreville et al. (2008))

proposes kernel PCA to model the distribution on the nonlinear manifold and (Chen &

Radke (2009)) proposes a joint prior on shape and intensity for object segmentation us-

ing kernel density estimation that theoretically resembles kPCA. A recent method (Zhang
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et al. (2012)) represents object shape as a sparse linear combination of image templates

in a training set, but it assumes knowledge of a one-to-one correspondence between tem-

plates before learning. Another method models shape as a union of convex polytopes,

where the polytopes are represented by intersections of half spaces (Mesadi et al. (2018)),

but it requires the images to be segmented to be aligned to a fixed coordinate system as a

pre-processing step. All aforementioned segmentation approaches rely on learning shape

models from highly-curated error-free expert segmentations that are infeasible to obtain

in practical deployment scenarios because of constraints on expert time and budgets.

Medial models have been used for object segmentation (Siddiqi & Pizer (2008);

Pouch et al. (2014)), where they typically impose geometrical constraints on the esti-

mated segmentation of non-branching sheet-like objects. Implicitly, the single learned

medial-model template coupled with validity constraints and regularization terms acts as

a topology-preserving shape “prior”, even though it is learned from only a single example

and does not explicitly model a distribution of shapes. In contrast, our method builds a

shape prior based on a learned distribution of object shapes.

Multiatlas segmentation (Aljabar et al. (2009); Wang et al. (2013a); Bai et al. (2013);

Awate & Whitaker (2014)) typically relies on a large database of high-quality template

images and segmentations. When the atlas database has limited size (Asman & Landman

(2013)) or is imperfectly curated, it may reduce the reliability of the underlying image

registration or label fusion, resulting in segmentation errors, e.g., altering its topology.

2.5.1 Non-Parametric Shape Models: Deep Boltzmann Machine,

Deep Neural Network

Deep learning with Boltzmann machines (BMs) hierarchically models a distribu-

tion on shapes represented as discrete label maps (Chen et al. (2013)). However, the dis-

cretization makes it difficult for deep BMs to model fine-scale structural features; if they

increase spatial resolution of the image, then they need larger training sets for reliable

learning. Deep neural networks (DNNs) (Ronneberger et al. (2015); Oktay et al. (2018);

Shin et al. (2016)) can perform complex segmentation tasks, but they often require either

a large training set (e.g., with a few hundred expert segmentations; before data augmen-

tation) or a highly-curated training set (e.g., with several tens of expert segmentations;

before data augmentation) for effective learning to prevent overfitting. The need for large

training sets with high-quality expert segmentations limits applicability of deep models in

many clinical applications. Some methods (Ravishankar et al. (2017); Arif et al. (2017))

propose to modify the 2D Unet (Ronneberger et al. (2015)) to explicitly model global-

level information in the form of 2D shapes for objects. In the context of medical image
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segmentation, very recent methods published this year (Ataloglou et al. (2019); Zhu et al.

(2019); Nogovitsyn & et al. (2019)) propose some schemes to handle the dearth of expert

segmentations. For instance, (Zhu et al. (2019)) trains the DNN on 3D patches, at the risk

of losing information about global shape regularity during learning. While (Nogovitsyn &

et al. (2019)) train a DNN for hippocampus segmentation using 2500 samples, (Ataloglou

et al. (2019)) use transfer learning to segment the hippocampus in one dataset by building

upon a DNN trained on a large set of highly-curated segmentations in the ADNI dataset.

However, such segmented datasets would be unavailable for many anatomical structures

of interest (this work shows results on the thalamus and the caudate).

Our Bayesian model learning coupled with hierarchical Riemannian analysis pro-

duces compact shape (distribution) models even using imperfect expert segmentations.

Consequently, ours results show that our method segments more accurately than other

shape models. Our method extends and enhances multiatlas segmentation by combining

a multiatlas-based likelihood model with our pointset-based Riemannian prior model for

object shape.

2.6 Application: Shape Clustering

There are recent works on Shape clustering using pointset based models, which are mainly

based on gaussian mixture models over shapes (Gooya et al. (2018)). But they are doing

it in Euclidean manifold, which has drawbacks indicated by our results. Our method of

clustering combines our Riemannian shape model with Gaussian mixture model formula-

tion to get benefits of both worlds.



Chapter 3

A Hierarchical Generative Shape Model
for Multigroup Shape Data

We model shape as an equivalence class of pointsets, where the equivalence is defined

using similarity transforms comprising translation, rotation, and isotropic scaling. We

describe a hierarchical statistical model that includes: (i) population-level variables mod-

eling a distribution over group distributions of object shapes, (ii) group-level variables

modeling a distribution over individual object shapes, (iii) a likelihood model on an in-

dividual’s segmentation (label map) conditioned on the individual’s object shape, (iv) the

observed data that comprises expert generated segmentations that exhibit manual errors

in the 3D labeling.

Our hierarchical framework is elaborated in figure 3.1.

3.1 Mathematical Notation

Consider a population comprising M groups, where group m has Nm individuals. For

individual i in group m, let data xmi represent the binary image (mask) corresponding to

the segmented anatomical object. For individual i in group m, let ymi be the (unknown)

pointset representing object shape. For group m, let zm be the (unknown) pointset repre-

senting the mean object shape and let Cm model the (unknown) covariance of shapes. We

model the variability of the group-mean shapes zm using population-level variables (i) µ

that models the (unknown) pointset representing the population-level mean object shape

and (ii) C that models the associated (unknown) covariance.

Each shape-representing pointset, or shape pointset, has J points in R3. Let ymi j ∈

R3, zm j ∈ R
3, and µ j ∈ R

3 denote the j-th points in the shape pointsets ymi, zm, and

µ, respectively. We rely on the Procrustes framework that assumes a correspondence

11
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between the J points across all shape-pointset variables, allowing us to represent each

pointset by a vector in R3J. We model the population mean µ and covariance C and the

group covariances {Cm}
M
m=1 as parameters. We model the shape pointsets Zm and Ymi as

latent random variables. Each shape pointset also lies in preshape space (Kendall (1989);

Goodall (1991)), with centroid at the origin and unit L2 norm. For shape pointsets a and b,

the Procrustes distance is dPro(a, b) := minR dg(a,Rb), where operator R applies a rotation

to each point in the pointset b and dg(·, ·) is the geodesic distance on the unit hypersphere

in preshape space.

3.2 Modeling Smooth Shapes

We model a probability density function (PDF) to capture the variability across (i) group

means Zm and (ii) individual shapes Ymi within each group, by extending the approxi-

mate Normal law on Riemannian manifolds (Pennec (2006)) to shape space, as motivated

in (Gaikwad et al. (2015)). For a and b on the unit hypersphere, let Loga(b) be the loga-

rithmic map of b with respect to a. Considering the tangent space of Kendall shape space

at µ to relate to preshapes that are rotationally aligned to µ, we model the logarithmic map

of shape a to the tangent space of the shape space at µ as LogSµ(a) := Logµ(R
∗a), where

R∗ := arg minR dg(Ra, µ) optimally aligns the preshape-space pointset a to µ. Extending

the Procrustes distance, we define the squared Mahalanobis shape-distance of shape a

with respect to µ and C as d2
Mah(a; µ,C) := LogSµ(a)>C−1LogSµ(a). To model a PDF that

gives larger probabilities to smoother shapes a, we use a prior that penalizes distances be-

tween each point a j and its neighbors within the pointset a. Let the neighborhood system

N := {N j}
J
j=1, where set N j has the neighbor indices of j-th point. In practice, we get N

by fitting a triangular mesh to the segmented object boundary. Thus, the probability for

shape a is

P(a|µ,C, β) :=
1

η(C, β)
exp

−d2
Mah(a; µ,C)

2
−
β

2

J∑
j=1

∑
k∈N j

‖a j − ak‖
2
2

 , (3.1)

where β ≥ 0 controls the strength of the smoothness prior and η(C, β) is the normaliz-

ing constant. The second term in the exponent equals 0.5a>Ωa, where Ω ∈ R3J×3J is

a sparse precision matrix with diagonal elements 2β and the only non-zero off-diagonal

elements equaling (−β) when the corresponding points are neighbors. We use this model

for (i) the conditional PDF P(zm|µ,C, β) of group mean shapes zm and (ii) the conditional

PDF P(ymi|zm,Cm, βm) of individual shapes ymi.
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3.3 Modeling Label-Map Likelihoods given Shapes

We design a novel measure of dissimilarity between the binary image xmi and individual

shape pointset ymi. First, for each point ymi j in the shape pointset ymi, we measure the

Euclidean distance to the closest point on the object boundary given by the segmentation

xmi. We can compute such distances efficiently using the signed distance transform of the

object boundary indicated by the segmentation xmi. LetDxmi(v) be the value of this signed

distance transform, at voxel v. Second, for each voxel on the zero level set of the distance

transformDxmi , we measure the Euclidean distance to the nearest point in the pointset ymi.

Let Zl
xmi

be the coordinate of l-th voxel on the zero-level set of Dxmi . Third, we compute

the aforementioned distances after aligning the pointset and the segmentation through a

similarity transform. Let the operator Tmi apply a similarity transform to the binary image

xmi. Then, our dissimilarity measure is:

∆(xmi, ymi) := min
Tmi

 J∑
j=1

(DTmi xmi(ymi j))2 +

L∑
l=1

min
j
‖Zl
Tmi xmi

− ymi j‖
2
2

 . (3.2)

In practice, it is less efficient to apply similarity transforms to images xmi instead of shape

pointsets ymi. Let the operator Smi represent a similarity transform applied to each point

in the pointset ymi. Then, our dissimilarity measure becomes

∆(xmi, ymi) := min
Smi

 J∑
j=1

(Dxmi(Smiymi j))2 +

L∑
l=1

min
j
‖Zl

xmi
− Smiymi j‖

2
2

 . (3.3)

Methods (Durrleman et al. (2009); Yu et al. (2014)) using current distance (Vaillant &

Glaunes (2005)) have quadratic complexity in either pointset’s cardinality. ∆(x, z) can be

efficiently approximated using algorithms O((J + L) log(J)), described later. We model

P(xmi|ymi) ∝ exp(−γm∆(xmi, ymi)).

3.4 Our Hierarchical Statistical Shape Model

For multigroup data of object segmentations, PDF is P(x,Y,Z|µ,C, {Cm}
M
m=1) :=

M∏
m=1

P(Zm|µ,C)
Nm∏
i=1

P(Ymi|Zm,Cm; βm)P(xmi|Ymi; γm), (3.4)

where all Z := {Zm}
M
m=1 and Y := {{Ymi}

Nm
i=1}

M
m=1 are latent random variables, x :=

{{xmi}
Nm
i=1}

M
m=1 are the observed data, the parameter set to be optimized is θ :=

{µ,C, {Cm}
M
m=1}. In this work, parameters βm := β, γm := γ,∀m, and β and γ are user

defined.
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Our optimization function becomes

θ∗ := arg max
θ

P(x|θ)

= arg max
θ

∫
P(x,Y,Z|θ)dYdZ

which can be solved using Monte-Carlo Expectation Maximization(MCEM) optimiza-

tion. Since PDFs involved in this optimization are not analytical, we choose MCEM over

variational-EM.

Figure 3.1: Hierarchical Model

3.5 Hierarchical Model Inference using Monte-Carlo

Expectation Maximization

We use EM to fit the hierarchical model to the data x := {{xmi}
Nm
i=1}

M
m=1. At iteration t

within EM, let the parameter estimates be θt := {µt,Ct, {Ct
m}

M
m=1}. At iteration t, the E step

defines the optimal lower bound to the observed-data likelihood function as Q(θ; θt) :=

EP(Y,Z|x,θt)[log P(x,Y,Z|θ)], where P(x, y, z|θ) is the complete-data likelihood. We propose

a Monte-Carlo approximation for the (intractable) expectation as

Q̂(θ; θt) :=
1
S

S∑
s=1

log P(x, ys, zs|θ), where (ys, zs) ∼ P(Y,Z|x, θt). (3.5)
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Section 3.6 describes our algorithm for sampling shapes (y, z) from P(Y,Z|x, θt).

The M step updates the parameters to θt+1 := arg maxθ Q̂(θ; θt). Given data x and the

sampled shape pairs {(ys, zs)}Ss=1, we alternatingly optimize the shape-distribution param-

eters θ and the internal parameters Smi until convergence.

Updating Similarity Transforms Smi. Typically, the number of data points L on the

zero level-set are at least an order of magnitude fewer than the cardinality J of the shape

pointsets. While aligning the binary images to the sampled shape pointsets {ys
mi}

S
s=1, we

can ensure that the parameter updates are sufficiently small such that, for most data points

Zl
xmi

, the nearest shape point ys
mi j′ (where the shape point indexed by j′ is the one closest

to the data point indexed by l) is the same before and after the update. We use (projected)

gradient descent for optimization. We approximate the gradients of the desired objective

function by first finding the pairs of nearest points (l, j′) and then taking the gradients of

the resulting function

J(Smi) :=
S∑

s=1

 J∑
j=1

(Dxmi(Smiy
s
mi j))

2 +

L∑
l=1

‖Zl
xmi
− Smiy

s
mi j′‖

2
2

 , (3.6)

with respect to the parameters underlying the similarity transform Smi, which are (i) trans-

lation t ∈ R3 represented as a 3 × 1 column vector, (ii) scaling parameter s ∈ R>0, and

(iii) rotation matrix R ∈ SO(3), such that, for a point a ∈ R3 represented as a 3×1 column

vector, the similarity-transformed point is Smi(a) := t + sRa. The rotation matrix update

relies on a reparameterization of the rotation matrix as the matrix exponential of a skew

symmetric matrix. To update R, we first compute the gradient of the objective function

with respect to R, then project the gradient onto the tangent space of SO(3) at the identity

matrix (i.e., the space of skew symmetric matrices), scale it by the step-size underlying

gradient descent, take the matrix exponential (which is also the exponential map) of the

scaled projection, and right-compose the resulting rotation matrix update with the original

rotation matrix R. A.1 gives the gradients of J(Smi) with respect to parameters t, s, and

R.

The objective function value depends on the nearest point in a shape pointset Smiymi

(of cardinality J) to each point in the set Zxmi (of cardinality L). We can find the re-

quired pairs of nearest neighbors in O((J + L) log J) time by building the k-d tree for each

pointset (taking O(J log J) computation) followed by L nearest-neighbor searches (taking

O(L log J) computation). Computing Dxmi is a one-time pre-processing task. To evalu-

ate the objective function, we need to access the values within Dxmi at J locations given

by S mi(ymi), taking O(J) computation. So, for each individual, computing the likelihood

function has O(J + (J + L) log J) complexity.
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Updating Population-Level Mean µ. The update for µ is given by

min
µ

S∑
s=1

M∑
m=1

Logµ(z
s
m)>C−1Logµ(z

s
m) such that ‖µ‖2 = 1. (3.7)

We use projected gradient descent (A.2 derives the gradient), where the projection rescales

the updated mean to unit norm. Here all gradients should lie in tangent hyper-plane at µ

in Riemannian space, but calculated gradients can have components normal to tangent

hyper-plane, so we project gradient on tangent hyper-plane at µ. By doing this, next

update, by this gradient, always lies in tangent hyper-plane at µ and has assured unit

norm. This update can be get by exponential map of projected gradient at µ, which is

nothing but Riemannian version of gradient descent update.

Updating Group-Covariance Parameters Cm. We update Cm as

arg min
Cm

Nm∑
i=1

S∑
s=1

LogSzs
m
(ys

mi)
>C−1

m LogSzs
m
(ys

mi) + (ys
mi)
>Ωys

mi + 2 log η(Cm, βm). (3.8)

Although the normalization term η(Cm, βm) is difficult to evaluate analytically, we find

that it can often be well approximated in practice. Assuming that the shape distribu-

tion P(ys
mi|z

s
m,Cm) has sufficiently low variance, the tangent vector LogSzs

m
(ys

mi) is close to

the difference vector ys
mi − zs

m (details in A.3), in which case P(ys
mi|z

s
m,Cm) appears as

a product of a multivariate Gaussian G(ys
mi; zs

m,Cm) with another multivariate Gaussian

G(ys
mi; 0,Ω). The product distribution equals G(ys

mi; zs
m,C

reg
m ) where the regularized co-

variance Creg
m := (C−1

m + Ω)−1 restricts all variability to the tangent space at the mean zm

and the normalization term η(Cm, βm) ≈ (2π)D/2|Creg|0.5. Then, the optimal covariance Ĉreg
m

is the sample covariance of tangent vectors LogSzs
m
(ys

mi) in the tangent spaces at zs
m. So, the

group covariance Ĉm update takes a closed form.

Updating Population-Level Covariance Parameter C. The strategy for updating

C is analogous to the one just described for estimating Cm. We first compute Ĉreg as the

sample covariance of tangent vectors LogSµ(z
s
m) in the tangent space at µ. Then, the optimal

Ĉ = ((Ĉreg)−1 −Ω)−1.

3.6 Robust Efficient MCMC Sampling on Riemannian

Manifolds

Monte-Carlo EM entails sampling shape-pointset pairs (ys, zs) from their posterior PDF

P(Y,Z|x, θt) in shape space. We propose a generic scheme for efficient sampling in

high-dimensional spaces on a Riemannian manifold and adapt it for sampling in shape
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space. Standard Metropolis-Hastings or Gibbs MCMC samplers are inefficient in high-

dimensional spaces (MacKay (2012)) where the data typically shows strong correlations

across dimensions. We propose to adapt Skilling’s multistate leapfrog method (MacKay

(2012)), an efficient MCMC sampler, to Riemannian spaces. We find that alternate ef-

ficient MCMC methods, e.g., Hamiltonian Monte Carlo used in (Yu et al. (2014)), can

be more sensitive to the tuning of the underlying free parameters (Wang et al. (2013b))

that involve parameters underlying solving the coupled partial different equations related

to the Hamiltonian. The choice of the free parameters underlying the HMC can be crit-

ical in controling the numerical stability of the differential equation solver. On the other

hand, we propose a sampler that we found to be more robust in practice, requiring lesser

parameter tuning.

We adapt Skilling’s multistate leapfrog method to a Riemannian manifold as fol-

lows. Consider a multivariate random variable F taking values f on a Riemannian man-

ifold F with associated PDF P(F). We initialize the MCMC sampler with a set of states

{ f q ∈ F}Qq=1. We propose to leapfrog a randomly-chosen current state f q1 over another

randomly-chosen state f q2 to give a proposal state f q3 := ExpFf q2 (−LogFf q2 ( f q1)), where the

logarithmic and exponential maps are defined with respect to the manifold F. The pro-

posal state f q3 is accepted (replacing the original state f q1), according to the Metropolis-

Hastings method, with probability equal to the ratio P( f q3)/P( f q1). The sampler only

needs to evaluate probability density ratios, without needing the gradients of the PDF

P(F). Such leapfrog jumps are repeated and after sufficient burn in, the set of Q states are

considered to be a sample from P(F).

We adapt the proposed leapfrog sampling scheme to shape space for sampling from

the Normal law P(z|µ,C, β) that leads to a Gaussian PDF in the tangent space of shape

space at µ, where the tangent space comprises all shapes aligned to µ. We initialize the

set of states to the pointsets {zq}
Q
q=1 in preshape space and rotationally aligned to the mean

µ. In shape space, we propose the leapfrog step

zq3 := arg min
c:=Rb

dg(c, µ), where b := Expzq2 (−Logzq2 (zq1)), (3.9)

which approximates the geodesic from zq1 to zq2 and uses that to propose the “leap” to

zq3 in shape space. The Metropolis-Hastings rule then accepts or rejects zq3 . To increase

more independent samples, as suggested by (MacKay (2012)), we reject 4 consecutive

set of states before accepting new set of state. Since we have to sample shape-pointset

pairs (ys, zs) from their posterior PDF P(Y,Z|x, θt), we perform iteration between ys and

zs according to Gibbs sampling mechanism, and inside each iteration we sample ys and zs

individually using our Riemannian leapfrog sampling.



Chapter 4

Hierarchical Riemannian Shape
Modeling for Hypothesis Testing

Given multigroup shape data, in the form of manual segmentations of objects across indi-

viduals and groups, we can use our MCEM hierarchical model fitting to test the hypothesis

that the distributions of object shapes in two groups is identical. We use permutation test-

ing for this task. Unlike parametric hypothesis tests, permutation tests are nonparametric,

rely on the generic assumption of exchangeability, lead to stronger control over Type-1

error, and are more robust to random errors in the measurements / post-processing of im-

age data. After estimating the group means and covariances {zm,Cm}Mm=1, we propose a

test statistic to measure the differences between the shape distributions arising from two

cohorts, say, A and B, by summing up the squared Mahalanobis shape-distances from

each individual shape y•i in both groups to the mean z• in the other group (using the other

group’s covariance C•), i.e.,

T :=
1

NA

NA∑
i=1

d2
Mah(yAi; zB,CB) +

1
NB

NB∑
i=1

d2
Mah(yBi; zA,CA). (4.1)

When the two groups have similar means and covariances, the test statistic T takes rela-

tively smaller values, compared to the case when the group means and covariances differ.

The test-statistic distribution is unknown analytically and we infer it using bootstrap sam-

pling, using 300 repeats.

We first present results to show the benefits of hierarchical modeling, where we use

simulated data that gives us a ground truth for comparison. Subsequently, we show results

comparing our method with other methods, on simulated and clinical Carpel bone image

data, for the tasks of hypothesis testing.

18
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4.1 Validation: Benefits of Hierarchical Modeling

Hierarchical modeling, which learns multigroup distributions jointly with population-

level variables, offers some benefits in (i) regularizing model fits and (ii) reducing the

occurrences of false positives during hypothesis testing.

Regularizing Effect of the Population-Level Variables. When we have data from

multiple groups of shapes such that one group has a much lower sample size than the oth-

ers, the population-level variables can help regularize the parameter estimation for that

group by reducing the sensitivity of the parameter estimation to the particular random

sample observed for that group. To evaluate this regularizing effect, we simulated data

from three groups of ellipsoidal shapes, where all groups keep two of their ellipsoidal

axes lengths fixed to 1 and vary the third axis from (i) 0.35 to 0.55 for group 1, (ii) 0.4 to

0.6 for group 2, and (iii) 0.45 to 0.65 for group 3. For the first and third group, we create

data for 1000 ellipsoids randomly drawn from the distribution. For the second group, we

create data for 10 ellipsoids randomly drawn from the distribution. Then, we estimated

all model parameters by introducing and varying the weight, say, α, of the hierarchical

prior α log P(zm; µ,C, β), with α ∈ [0, 1]. We evaluated the model fits by computing the

geodesic distance between estimated mean and true mean for the low-sample group. We

repeated this experiment 500 times under varying random draws of the data for all groups.

The cumulative distribution function (CDF) of the distances (Figure 4.1(a)), across exper-

iments, shows that the estimates have decreasing variation (CDF rises faster) as α in-

creases to 1. This is the regularizing effect we expect to see. In this set of experiments,

we also find that the estimates gain accuracy with increasing α, because the population

mean and the mean of the low-sample group are close to each other by design. In general,

a hierarchical model can reduce the variation / sensitivity of the estimates at the cost of

introducing a bias.

Reducing False Positives in Hypothesis Testing (Shrinkage Effect). During hy-

pothesis testing, when the group sample sizes are small, there is a tendency of models

to overfit to the data, which can cause the fitted distributions to differ severely from the

actual group distributions. However, the presence of the population-level variables in the

hierarchical model have a regularizing effect on the group-model parameters, by pulling

group mean estimates towards the population mean and, thereby, reducing the distance

between them. This “shrinkage” effect prevents overfitting and reduces the occurrence

of false positives. Thus, a hypothesis test indicating statistically significant group differ-

ences using hierarchical modeling can be more reliable than the one without hierarchical

modeling. To evaluate the shrinkage effect, we simulate ellipsoidal data from two groups,

with identical shape distributions, by keeping two ellipsoidal axes fixed to 1 and varying
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(a) (b)
Figure 4.1: Benefits of Hierarchical Modeling. (a) Regularizing Effect of Population-

Level Variables: Distribution of geodesic distances between estimated and true group

means, with varying strengths α (see text) of the population-level prior. (b) Reducing

False Positives in Hypothesis Testing (Shrinkage Effect): Distribution of the test statis-

tic between two group samples drawn from the same shape distribution, with varying

strengths α (see text) of the population-level prior.

the third axis in the range 0.4 to 0.8. We randomly generate two groups of sample size

10 (small), fit the hierarchical model with varying α, and compute the test statistic. We

repeat this experiment 500 times to get the CDF of the test statistic with the small sample

sizes of 10. As α increases, we find the test statistic PDF mass shifting left towards zero,

which is desirable because the two groups of data are actually drawn from the same shape

distribution. We also conduct another 500 experiments with a large sample size of 1000,

where the CDF (Figure 4.1(b)) clearly indicates all test statistic values to be close to zero,

as expected.

4.2 Results: Hypothesis Testing

We present the results of hypothesis testing using our method for hierarchical shape mod-

eling and inference. We have implemented our model and hypothesis testing framework in

MATLAB programming environment without any external library support. We have com-

pared our method with a state-of-the-art pointset-based shape analysis approach named

ShapeWorks (SCI Institute (2013)) that differs from our approach in many ways as fol-

lows. First, ShapeWorks constraints the points to be placed (at real-valued sub-voxel

locations) on the zero level set associated with the distance transform of the object bound-

ary represented by the segmentation; in this way, it becomes sensitive to the (inevitable)

errors in manual segmentation. Second, is does not rely on a hierarchical modeling ap-

proach. Third, it assumes an initial alignment of the segmentations and does not align

them during inference. Fourth, ShapeWorks treats the group means as parameters in-
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(a) (b) (c) (d) (e) (f)
Figure 4.2: Results: Hypothesis Testing on Simulated Ellipsoidal Data. (a) Ground

truth segmentation. (b) Corrupted segmentation (data), mimicking human errors. (c)-
(d) Our method’s MAP estimates for group means z1, z2. (e)-(f) ShapeWorks’s estimates

for group means z1, z2.
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Ours (Riemannian) ShapeWorks (Euclidean)
Figure 4.3: Results: Hypothesis Testing on Simulated Ellipsoidal Data. Estimated

principal mode of variation of the first group with mean z1 for our method and Shape-

Works, with λ11 as first principal eigenvalue and v11 as first principal eigenvector of group

covariance C1.

stead of random variables. To evaluate ShapeWorks, we first align all the images using

similarity-transform based registration, and then give the aligned segmentations, of all

groups, to ShapeWorks to compute the optimal point placement. Then, given the aligned

pointsets of all groups, we compute the shape mean for each group. Now, we make the

scale of the mean-shape pointsets and individual-shape pointsets obtained by ShapeWorks

commensurate to that of our approach as follows. For each group, we center the mean

shape so that its centroid is at the origin, rescale the mean shape to unit norm, and then

apply the same group-specific centering and rescaling to each member of the group. We

evaluate the methods on simulated data as well as real-world clinical data including bone

shapes obtained from computed tomography (CT) imaging and subcortical brain shapes

obtained from magnetic resonance imaging (MRI).

4.2.1 Results: Hypothesis Testing on Simulated Ellipsoidal Data

We simulate two groups of segmentations of ellipsoidal shapes, each having 36 sam-

ples with variation along single axis, keeping the other two axes lengths the same over the
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Figure 4.4: Results: Hypothesis Testing on Simulated Ellipsoidal Data. Estimated

principal mode of variation of the second group with mean z2 for our method and Shape-

Works, with λ21 as first principal eigenvalue and v21 as first principal eigenvector of group

covariance C2.

(a) (b) (c) (d)
Figure 4.5: Results: Hypothesis Testing on Simulated Ellipsoidal Data. Compactness

of point correspondences across fitted shapes in one group, indicated pointwise by the

variability in the locations of each set of corresponding points (i.e., {ymi j}
Nm
i=1 ) across the

group, where the variability measure is the sum of the smallest two eigenvalues of the

3D covariance of each point on the mesh. Each mesh-point’s variability in location (ymi j)

across the group (i.e., over all shapes i = 1, · · · ,Nm) for (a) our model and (b) Shape-

Works, visualized on the estimated mean shape (i.e., zm) for each group. (c)-(d) Eigen-

spectra for group covariances C1 and C2; error bars show variation across multiple exper-

iments with different corruption instances.

(a) (b) (c) (d) (e) (f)
Figure 4.6: Results: Hypothesis Testing on Simulated Ellipsoidal Data. (a)-(b) Sam-

pled individual shapes ys
mi from our method. (c)-(d) MAP estimates of individual shapes

ymi from our method. (e)-(f) Estimated shapes of individuals from ShapeWorks.



4.2 Results: Hypothesis Testing 23

(a) (b) (c)

(d) (e) (f)
Figure 4.7: Results: Hypothesis Testing on Simulated Ellipsoidal Data. Cohen’s d

effect size between the two group distributions based on estimates of group means z1 and

z2 and covariances C1 and C2, computed per mesh point j based on the j-th components

of the means and the j-th diagonal elements of the covariance matrices, and visualized on

the population mean µ, for: (a) ground truth data (large sample size; 2000 per group) and

(b)-(c) our method and ShapeWorks, respectively (small sample size, 36 per group). Per-

mutation tests showing the histogram of the test statistic under the null hypothesis and the

unpermuted test-statistic values (error bars represent results from repeated experiments)

for: (d) ground truth data (large sample size; 2000 per group) and (e)-(f) our method and

ShapeWorks, respectively (small sample size, 36 per group).

entire population. The range of the variations across both groups overlap. We also intro-

duce surface perturbations in the form of bumps and pits to these binary segmentations to

mimic human errors in labeling (Figure 4.2(a)-(b)). To generate the ground truth values

for the group-mean and group-covariance parameters, we simulate two groups of ellip-

soidal segmentations as before, but with 2000 shapes in each group without any errors in

the segmentations. We then use the large-sample uncorrupted data to fit the model to each

group to get its “true” means and covariances. The estimates of group means (Figure 4.2)

and modes of variation (Figures 4.3,4.4) from our method indicate (i) smoother and more

accurate group means and (ii) modes of variation that indicate smoother and more accurate

shape variations, compared to ShapeWorks. The variability in the locations of each set

of corresponding mesh points, within a group, is much smaller for our model, indicating

that this distribution was more compact (mainly concentrated in the first eigenvalue) com-



4.2 Results: Hypothesis Testing 24

(a) (b) (c) (d) (e) (f)
Figure 4.8: Results: Hypothesis Testing on Carpal Bones - Hamate. (a) Ground truth

segmentation. (b) Corrupted segmentation (data), mimicking human errors. (c)-(d) Our

method’s MAP estimates for group means z1, z2. (e)-(f) ShapeWorks’s estimates for group

means z1, z2.

pared to ShapeWorks (Figure 4.5(a)-(b)). The group covariances obtained from our model

(Figure 4.5(c)-(d)) are more compact than those from ShapeWorks. The compactness of

our model fit stems from (i) points not being forced to lie on the (corrupted) segmentation

boundary, unlike ShapeWorks, and (ii) the use of hierarchical modeling and Riemannian

geometrical modeling. Consequently, the sampled shapes (Figure 4.6(a)-(b)) and MAP

estimates of individual shapes from our method (Figure 4.6(c)-(d)) are smooth and realis-

tic, unlike the individual shape estimates from ShapeWorks (Figure 4.6(e)-(f)). Cohen’s d

effect sizes (Figure 4.7(a)–(c)) show that the surface pattern of inter-group differences in-

ferred using method is closer to the ground truth (learned using a very large sample size of

2000 per group), as compared to ShapeWorks. Consequently, the permutation-test p val-

ues from our method (Figure 4.7(e)) are significantly smaller, as desired, than those from

ShapeWorks (Figure 4.7(f)), thereby correctly indicating of a significant different between

the distributions of the two groups as indicated by the ground truth (Figure 4.7(d)).

4.2.2 Results: Hypothesis Testing on Carpal Bones Data

This dataset (Moore et al. (2007)) includes segmentations of eight different carpal

bones (namely, hamate, trapezoid, pisiform, capitate, trapezium, lunate, scaphoid, and

triquetrum) for 15 male subjects and 15 female subjects. Unlike the simulated ellipsoidal

dataset, the bone shapes in this dataset are non-trivial. These segmentations inherently

have a small amount of bumpy surface perturbations. To create a more challenging task,

we introduced additional surface perturbations in the form of bumps and pits to these

segmentations to mimic human errors in labeling, e.g., in Figure 4.8(a)-(b).

Analogous to the ellipsoidal dataset, for the hamate bone, we find that the means

(Figure 4.8(c)–(f)) and the modes of variation (Figures 4.9,4.10) are more realistic for

our method, compared to ShapeWorks. Compared to ShapeWorks, the variability in

the locations of each set of corresponding mesh points, within a group, is more com-
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Figure 4.9: Results: Hypothesis Testing on Carpal Bones - Hamate. Estimated prin-

cipal mode of variation of the first group with mean z1 for our method and ShapeWorks,

with λ11 as first principal eigenvalue and v11 as first principal eigenvector of group covari-

ance C1.
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Figure 4.10: Results: Hypothesis Testing on Carpal Bones - Hamate. Estimated princi-

pal mode of variation of the second group with mean z2 for our method and ShapeWorks,

with λ21 as first principal eigenvalue and v21 as first principal eigenvector of group covari-

ance C2.

pact for our model (Figure 4.11(a)-(b)) and, consequently, so are the group covariances

(Figure 4.11(c)-(d)). The sampled shapes (Figure 4.12(a)-(b)) and MAP estimates (Fig-

ure 4.12(c)-(d)) of individual shapes from our method are more smooth and realistic,

compared to ShapeWorks (Figure 4.12(e)-(f)). Some literature points to shape differences

between the carpal bone shapes in male and female hands. Our method shows the differ-

ences, in terms of Cohen’s d effect sizes (Figure 4.13(a)-(b)) in a more spatially focused

manner. The permutation test using our statistic tends a little more towards the indication

of differences between the groups (Figure 4.13(c)-(d)). We also explored utility of our

model that allows the optimal point placements off the segmented object boundary. For

ShapeWorks, if we additionally smoothed the segmentation data in order to eliminate the

perturbations in the segmentation, then there is a risk of oversmoothing the features them-

selves, leading to parameter estimates, e.g., group mean shapes (Figure 4.14(e)-(f)), and

individual shapes that lose the characteristic biological features, which is undesirable. In
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(a) (b) (c) (d)
Figure 4.11: Results: Hypothesis Testing on Carpal Bones - Hamate. Compactness of

point correspondences across fitted shapes in one group, indicated pointwise by the vari-

ability in the locations of each set of corresponding points (i.e., {ymi j}
Nm
i=1 ) across the group,

where the variability measure is the sum of the smallest two eigenvalues of the 3D covari-

ance of each point on the mesh. Each mesh-point’s variability in location (ymi j) across

the group (i.e., over all shapes i = 1, · · · ,Nm) for (a) our model and (b) ShapeWorks,

visualized on the estimated mean shape (i.e., zm) for each group. (c)-(d) Eigenspectra for

group covariances C1 and C2; error bars show variation across multiple experiments with

different corruption instances.

(a) (b) (c) (d) (e) (f)
Figure 4.12: Results: Hypothesis Testing on Carpal Bones - Hamate. (a)-(b) Sampled

individual shapes ys
mi from our method. (c)-(d) MAP estimates of individual shapes ymi

from our method. (e)-(f) Estimated shapes of individuals from ShapeWorks.

(a) (b) (c) (d)
Figure 4.13: Results: Hypothesis Testing on Carpal Bones - Hamate. Cohen’s d effect

size between the two group distributions based on estimates of group means z1 and z2

and covariances C1 and C2, computed per mesh point i based on the i-th components

of the means and the i-th diagonal elements of the covariance matrices, and visualized

on the population mean µ, for: (a) our method and (b) ShapeWorks. Permutation tests

showing the histogram of the test statistic under the null hypothesis and the unpermuted

test-statistic values (error bars represent results from repeated experiments) for: (c) our

method and (d) ShapeWorks.
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(a) (b) (c) (d) (e) (f)
Figure 4.14: Results: Hypothesis Testing on Carpal Bones - Hamate. (a)-(b) Ground

truth object segmentations of an example male and female bones, respectively. (c)-(d) Our

method’s MAP estimates for the bone shapes in (a) and (b), respectively. (e)-(f) Shape-

Works’s estimates for the bone shapes in (a) and (b), respectively, when ShapeWorks

additionally smooths the corrupted data to get rid of the added bumps.

(a) (b) (c) (d)
Figure 4.15: Results: Hypothesis Testing on Carpal Bones - Trapezoid. Captions as in

Figure 4.13.

(a) (b) (c) (d)
Figure 4.16: Results: Hypothesis Testing on Carpal Bones - Capitate. Captions as in

Figure 4.13.

(a) (b) (c) (d)
Figure 4.17: Results: Hypothesis Testing on Carpal Bones - Lunate. Captions as in

Figure 4.13.

contrast, our method (Figure 4.14(c)-(d)) avoids adhoc smoothing using pre-processing,

but rather accounts for the corruptions in the segmentations in the statistical model, and

retains they key biological bone characteristics.
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(a) (b) (c) (d)
Figure 4.18: Results: Hypothesis Testing on Carpal Bones - Pisiform. Captions as in

Figure 4.13.

(a) (b) (c) (d)
Figure 4.19: Results: Hypothesis Testing on Carpal Bones - Scaphoid. Captions as in

Figure 4.13.

(a) (b) (c) (d)
Figure 4.20: Results: Hypothesis Testing on Carpal Bones - Trapezium. Captions as

in Figure 4.13.

(a) (b) (c) (d)
Figure 4.21: Results: Hypothesis Testing on Carpal Bones - Triquetrum. Captions as

in Figure 4.13.

We perform the hierarchical shape model fitting and hypothesis testing on the other

bone groups, i.e., trapezoid (Figure 4.15), capitate (Figure 4.16), lunate (Figure 4.17),

pisiform (Figure 4.18), scaphoid (Figure 4.19), trapezium (Figure 4.20), and triquetrum

(Figure 4.21). Overall, as seen in the figures, we find that our model leads to smoother

means and smoother modes of variation, which leads to greater regularity in the Cohen’s

d effect size maps compared to ShapeWorks. Our compact models also lead to smaller p

values than ShapeWorks. As discussed in Section 4.1, hierarchical modeling inherently
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incorporates a safeguard against false positives in detecting inter-group differences. Thus,

the lower p values from our approach can be considered to be reliable.



Chapter 5

Riemannian Shape Prior for Bayesian
Image Segmentation

For a group of shapes, the learned shape model, say, P(·|zm,Cm), gives (i) the mean shape

zm in Kendall shape space and (ii) the principal modes of variation of shape through the

principal eigenvectors of Cm defined in the tangent space at zm. We propose a novel formu-

lation for object segmentation that constrains the estimated object shape to be represented

within a subspace of the tangent space at the mean spanned by the principal eigenvectors

of th covariance.

5.1 Object-Shape Representation and Segmentation

Prior

In this section, for simplicity, we use the notation of µ being the group mean and C being

the group covariance, unlike the previous sections where we used these symbols for the

population level parameters. Let the top-K eigenvalues and eigenvectors of C be {λk}
K
k=1

and {vk}
K
k=1. We propose to model true object shapes y using (i) a linear combination

of the top eigenvectors {vk}
K
k=1 with coefficients {wk ∈ R}

K
k=1, i.e.,

∑K
k=1 wkvk, followed by

the (ii) the exponential map Expµ(·) with respect to the mean µ (Pennec (2006)). This

work uses K ≤ 45. Shapes y model an equivalence class of pointsets through similarity

transforms S, i.e., SExpµ(
∑K

k=1 wkvk), which model object boundaries. We propose to

model a PDF on true object shapes that promotes shapes that are representable using the

top few eigenvectors of C, by penalizing coefficients wk proportional to their magnitude

and inversely proportional to the standard deviation
√
λk. Our novel shape prior model

is P(y = Expµ(
∑K

k=1 wkvk)) := ζ exp(−τ
∑K

k=1 |wk|/
√
λk), with normalizing constant ζ and

free parameter τ ∈ R>0.

30
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5.2 Generative Model for Observed Image Data

We need to fit our model P(y) to the observed data that is in the form of an image I

having intensity-based feature Fp at a voxel p. Let the set of voxel locations be P. Let

functional entity F which take image I as input and produces Because we represent the

object boundary by a pointset S◦ y, we propose to first convert this representation into an

image representation by assigning binary values to all voxels P in the image, by assigning

a value of 1 for p inside the object and a value of 0 for p outside the object. Let B be this

binarization operator, and let B(S ◦ y)p denote the binary value at voxel p. Subsequently,

we propose to measure the quality of fit of the object segmentationB(S◦y) to the observed

feature image I as follows. Let image L model the segmentation labels, where Lp ∈ {0, 1}

is the label at voxel p, label 1 denotes the object’s interior, and label 0 denotes the object’s

exterior. Then we can express likelihood of label L as PF(L|I, θ) ,where F represents

underlying model, which take image I as input and produces PF(L|I, θ) as output with θ

as parameters. Here θ is learned through training of model F with the training data of

image I and corresponding label map L.

For segmentation purpose, we have two kinds of dataset, as (i) simulated MRI

data containing MRI image generated from actual binary segmentations of ellipsoids and

carpel bone, (ii) clinical brain MRI data containing actual brain MRI scans with respec-

tive expert segmentations of subcortical structures. For simulated MRI data we propose to

model F as trained multi-atlas segmentation method with parameters θMA, and for clinical

brain MRI data we model F as trained DNN with weight parameters θDNN. We propose to

model the posterior PDF of object shape y, given the (i) learned Riemannian shape prior

model parameterized by the mean µ, eigenvalues Λ, and eigenvectors V , (ii) learned F

model on labels parameterized by θ, and (iii) observed image I, as

log P(y = Expµ(
K∑

k=1

wkvk)|S, w, µ,Λ,V, θ, I) :=
∑
p∈P


B(S ◦ y)p log PF(lp = 1|θ, I)

+ (1 − B(S ◦ y)p) log PF(lp = 0|θ, I)

+ (−τ
K∑

k=1

|wk|/
√
λk),


upto an additive term, i.e., the log normalizing constant. In this PDF term B(S ◦

y)p log PF(lp = 1|θ, I) will be zero if voxel p is in highest probability region of PF(L|I, θ)

otherwise a large negative number if voxel p is inside S ◦ y and in lower probability re-

gion PF(L|I, θ). Similarly, term (1 − B(S ◦ y)p) log PF(lp = 0|θ, I) will be zero if voxel p

is in lowest probability region of PF(L|I, θ) otherwise a large negative number if voxel p

is outside S ◦ y and in higher probability region PF(L|I, θ).
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5.3 Bayesian Formulation for Object Segmentation

We formulate object segmentation as maximum-a-posteriori (MAP) estimation on object

shapes y, as

arg max
S,{wk}

K
k=1

log P(y = Expµ(
K∑

k=1

wkvk)|S, w, µ,Λ,V, θ, I)

The solution gives the object boundary as S∗ ◦ Expµ(
∑K

k=1 w
∗
kvk), where S∗ is the optimal

similarity transform and {w∗k}
K
k=1 are the optimal coefficients.

5.4 Optimization Algorithm

We propose to optimize the posterior by alternatingly optimizing the object-boundary

representation parameters S and {wk}
K
k=1. We propose a novel brute-force search for the

parameters underlying object-boundary representation. We have (i) K parameters for the

object-shape representation and (ii) the parameters underlying the similarity transform S

that we model using 3 parameters for translation, 1 parameter for isotropic scaling, and 3

parameters for rotation. We model rotation in 3D by an orthogonal matrix of determinant

+1, which we model as the matrix exponential of a 3 × 3 skew symmetric matrix (Taylor

& Kriegman (1994)) parameterized by its 3 off-diagonal terms. On these (7 + K) scalar

parameters representing the object boundary, we propose alternating coordinate descent

using brute-force optimization over a chosen discretized set of the scalar parameter values

within typical ranges.

5.5 Results: Segmentation

We present the results of object segmentation using our method for our shape prior. We

have implemented our method and shape prior model in MATLAB programming envi-

ronment without external library support. DNN models are implemented in python pro-

gramming environment using Tensorflow-Keras. Multiatlas method is implemented in

MATLAB programming environment.

5.5.1 Results: Segmentation on Simulated MRI data

We have simulated MRI image from binary segmentation by adding combinations

of gaussian noise and salt-and-pepper noise. As explained in previous sections, we have

model F as trained multiatlas segmentation method (Bai et al. (2013); Awate & Whitaker

(2014)). We trained multiatlas segmentation using noisy version of binary segmentation

to test robustness of our method.
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We compare against two other methods: (i) Segmentation using a prior learned us-

ing ShapeWorks (SCI Institute (2013)): During learning, unlike our method, ShapeWorks

assumes manual segmentations to be perfect, it constraints the point placement to lie only

on the object boundary indicated by the manual segmentation, and it ignores the mani-

fold structure of the shape space. During learning and segmentation, and it heuristically

pre-aligns intensity images to a common image coordinate space, instead of (iteratively)

optimally aligning the shape-model reference frame to the object in the image. (ii) Multi-

atlas segmentation (Bai et al. (2013); Awate & Whitaker (2014)): that relies on nonlinear

nonparametric diffeomorphic registration of a database of atlases to the test image and,

then, performing patch-based label fusion to segment the test image. Multiatlas segmen-

tation, however, fails to account for the human errors in image segmentation in the atlas

database, which can lead to losses in performance, especially for small database sizes. We

measure segmentation quality using (i) the Dice similarity coefficient (DSC) and (ii) the

average of the shortest inter-surface distances between each point on the estimated object

surface and the ground truth (or the expert segmentation, when “truth” unavailable for

clinical data).

Results: Segmentation on Simulated Ellipsoids Data

Our hierarchical shape models learned on the ellipsoidal dataset in Section 4.2.1 pro-

vides a model for each group of shapes. We use one of the group models to segment

corrupted images comprising objects with ellipsoidal shapes drawn from the same group.

As described in Section 4.2.1, we simulate a group of 36 ellipsoids represented as binary

segmentation images, where the true single mode of shape variation changes the length of

the major axis of the ellipsoid over a specified range. Given the true binary segmentations,

we simulate intensity images by blurring the binary (0–1) image and adding zero-mean,

independent and identically distributed Gaussian random noise of standard deviation 0.3.

To mimic errors in expert segmentations in practice, we introduce randomly generated

coarse-scale and fine-scale perturbations (bumps and pits at multiple scales) on the true

ellipsoidal surface. This group of pairs of (noisy) intensity and (perturbed) label images

forms our training set that multiatlas segmentation uses as the atlas database, while our

method and ShapeWorks learn the shape prior from the perturbed segmentations. Our

test set is another group of 30 ellipsoid intensity images (Figure 5.1(a)) created using the

same procedure as our training set. We treat output of multiatlas segmentation on test set,

using training set atlas database, as PF(L|I, θ) as mentioned in 5.2. Compared to other

methods (Figure 5.1(c)-(d)), our framework produces the highest DSC values and the

lowest inter-surface distances, evaluated against the ground truth (Figure 5.1(h)), signifi-
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(a) Data (b) Expert Seg. (c) (d)

(e) Ours (f) ShapeWorks (g) MultiAtlas (h) True Seg.
Figure 5.1: Results: Segmentation on Simulated Data. (a) A 2D slice of a simulated

3D image. (b) Expert segmentation. Box plots showing methods’ performances across

dataset, measured by (c) Dice similarity coefficient and (d) average of the shortest inter-

surface distances between each point on estimated object surface and ground-truth. Es-

timated 3D segmentation’s surface rendering, with each surface location colored by the

shortest signed distance to ground-truth surface (in terms of percentage of ground-truth

diameter), for: (e) our method, (f) ShapeWorks (SW) shape model, (g) multiatlas (MA)

segmentation with nonlinear nonparametric registration, and (h) ground-truth segmenta-

tion.

cantly improving over ShapeWorks and multiatlas segmentation. Qualitatively, the object

boundaries from our segmentations (Figure 5.1(e)) are closest to the ground truth (Fig-

ure 5.1(h)), compared to ShapeWorks (Figure 5.1(f)) and multiatlas segmentation (Fig-

ure 5.1(g)). ShapeWorks’s estimate of the object boundary lacks smoothness because of

the unreliable learning stemming from erroneous expert segmentations, which leads to

errors in its prior model’s mean and modes of variation. Multiatlas segmentation also suf-

fers because of (i) errors in measuring patch similarity, stemming from image noise and

artifacts, and (ii) errors in label fusion stemming from the errors in expert segmentations.

Results: Segmentation on Carpal Bone Data

Analogous to the experiments with ellipsoidal shapes in Section 5.5.1, we use the carpal

bone segmentations to generate corrupted intensity images as data (note: this dataset does

not provide the original medical images, but only their high-quality segmentations). We

then use the shape models learned in Section 4.2.2 to segment the bone shapes from the

generated images. We perform these experiments on three examples of carpal bones,

i.e., trapezoid, hamate, and pisiform. For trapezoid shapes (Figure 5.2), hamate shapes
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(Figure 5.3), and pisiform shapes (Figure 5.4), we find that our method produces segmen-

tations that have higher DSC values and lower inter-surface distances. Qualitatively, our

method also produces smoother and more realistic shapes.

5.5.2 Results: Segmentation in Clinical Brain Subcortical MRI

We evaluate using 2 databases with clinical brain MRI (IRB approved studies)

and radiologist-provided segmentations of the thalamus, the caudate, the globus, the

hippocampus, and the putamen. One dataset, acquired at Tata Memorial Hospital in

Mumbai, has 30 images with low-quality segmentations because of a constrained time

budget—this is the training database for all models. Another dataset, from the National

(a) Data (b) Expert Seg. (c) (d)

(e) Ours (f) ShapeWorks (g) MultiAtlas (h) True Seg.
Figure 5.2: Results: Segmentation on Carpel Bone Shapes: Trapezoid. Captions as in

Figure 5.1.

(a) Data (b) Expert Seg. (c) (d)

(e) Ours (f) ShapeWorks (g) MultiAtlas (h) True Seg.
Figure 5.3: Results: Segmentation on Carpel Bone Shapes: Hamate. Captions as in

Figure 5.1.
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(a) Data (b) Expert Seg. (c) (d)

(e) Ours (f) ShapeWorks (g) MultiAtlas (h) True Seg.
Figure 5.4: Results: Segmentation on Carpel Bone Shapes: Pisiform. Captions as in

Figure 5.1.

Alliance on Medical Image Computing (www.na-mic.org), has 70 images with high-

quality segmentations—we use 10 images as validation set (to tune hyperparameters for

each method) and 60 images for evaluation. We compare our framework that couples a

3D Unet with the sparse Riemannian shape prior, as in chapter 5, with 4 other frame-

works: (i) Unet: 3D Unet (Ronneberger et al. (2015)) with typical data augmentation;

(ii) SR-Unet: Shape-regularized Unet (Ravishankar et al. (2017)), which we extend to

3D; (iii) Unet+SW: Unet coupled with a shape prior learned from ShapeWorks (SCI Insti-

tute (2013)); and (iv) MA: Multiatlas segmentation that relies on nonlinear nonparametric

diffeomorphic registration of the (training) database of atlases to the test image and, then,

performing patch-based label fusion to segment the test image. We evaluate performance

using: (i) Dice similarity coefficient (DSC) and (ii) mean of the shortest inter-surface dis-

tances between each point on the estimated object surface and the surface indicated by

the high-quality segmentation (ground truth).

As expected, the Unet faces challenges in learning from a training set that is small

sized and has low-quality segmentations. Thus, we see reduced regularity (Figures 5.5(f),

5.6(f), 5.7(f), 5.8(f), 5.9(f)) and quantitative performance (Figures 5.5(b)-(c), 5.6(b)-(c),

5.7(b)-(c), 5.8(b)-(c), 5.9(b)-(c)), compared to the typical cases in the literature where the

training set is higher quality and larger.

The SR-Unet (Ravishankar et al. (2017)) infuses additional information in the learn-

ing, which aims to implicitly capture the statistics of shape variability and regularity,

similar to other such approaches (Arif et al. (2017)). While for the thalamus, SR-Unet’s

results improve over those of the Unet, SR-Unet’s performance for the caudate is statisti-

cally similar to that of Unet (Figures 5.5(b)-(c), 5.6(b)-(c)). For globus, hippocampus, and

www.na-mic.org
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putamen, SR-Unet’s quantitative performance is similar to that of Unet (Figures 5.7(b)-

(c), 5.8(b)-(c), 5.9(b)-(c)), but in case of globus, it produces over-smoothed shape (Fig-

(a) Evaluation Data (b) (c)

(d) High-Qual. Truth (e) Ours (f) Unet
[DSC = 1, Dist. = 0] [0.91,1.48] [0.88,2.16]

(g) SR-Unet (h) Unet+SW (i) MultiAtlas

[0.89,1.97] [0.90,1.68] [0.75,5.07]

Figure 5.5: Results on Clinical Brain MRI: Subcortical Structure Thalamus. (a) A

2D slice of the 3D test image. Box plots showing methods’ performances across dataset,

measured by (b) Dice similarity coefficient, (c) mean of the shortest inter-surface dis-

tances between each point on estimated object surface and ground-truth. (d) High-quality

ground-truth segmentation. Estimated segmentation’s surface rendering, with each sur-

face location colored by the shortest signed distance to ground-truth surface (in terms of

percentage of ground-truth diameter), for (e) Our method; (f) Unet (Ronneberger et al.

(2015)); (g) Shape-regularized Unet (Ravishankar et al. (2017)), extended to 3D; (h) Unet

+ ShapeWorks prior model; (i) Multiatlas segmentation.
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(a) Evaluation Data (b) (c)

(d) High-Qual. Truth (e) Ours (f) Unet
[DSC = 1, Dist. = 0] [0.86,0.88] [0.82,1.55]

(g) SR-Unet (h) Unet+SW (i) MultiAtlas (j) Unet+SWs

[0.82,1.7] [0.81,1.23] [0.77,2.54] [0.82,1.27]

Figure 5.6: Results on Clinical Brain MRI: Subcortical Structure Caudate. Captions

(a)–(i) same as in Figure 5.5. (j) Segmentation with Unet+SWs, where ShapeWorks’s

prior learning extra smooths segmentations in low-quality training set.

ure 5.7(f)-(g)) compared to that of UNet. In case of hippocampus and putamen, SR-UNet

produces segmentations with less regularity and smoothness compared to that of UNet

(Figures 5.8(f)-(g), 5.9(f)-(g)). In this way, DNN approaches can face difficulty in opti-

mizing the large number of underlying parameters, especially from imperfectly-curated

small-sized training sets. While transfer-learning schemes can, in principle, alleviate this

problem to some extent, typical such schemes (Ataloglou et al. (2019); Nogovitsyn &

et al. (2019)) mainly focus on hippocampus segmentation for which large high-quality

training sets are available—thus, in practice it is unlikely that DNN features and mappings

learned for segmenting one anatomical structure will generalize well to other structures

associated with different contrasts, shapes, and sizes.

We find that Unet+SW significantly improves quantitative performance over the

Unet for the Thalamus (Figure 5.5(b)-(c)), but the quantitative improvement is unclear in
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(a) Evaluation Data (b) (c)

(d) High-Qual. Truth (e) Ours (f) Unet
[DSC = 1, Dist. = 0] [0.89,0.87] [0.89,1.18]

(g) SR-Unet (h) Unet+SW (i) MultiAtlas

[0.83,2.34] [0.85,1.35] [0.49,9.06]

Figure 5.7: Results on Clinical Brain MRI: Subcortical Structure Globus. Captions

(a)–(i) same as in Figure 5.5.

case of caudate, globus, hippocampus, and putamen (Figures 5.6(b)-(c), 5.7(b)-(c), 5.8(b)-

(c), 5.9(b)-(c)). Qualitatively, Unet+SW produces segmentations with significantly less

regularity and smoothness for all five brain subcortical structures in study (Figure 5.5(h),

5.6(h), 5.7(h), 5.8(h), 5.9(h)). The learning scheme for ShapeWorks, unlike our method,

(i) assumes segmentations to be high-quality, (ii) forces points to lie on the object bound-

ary indicated by the (low-quality, slightly erroneous) segmentation, and (iii) models shape

space as a linear manifold. During learning and inference, ShapeWorks pre-aligns inten-

sity images to a common image coordinate space, unlike our approach of (iteratively)

aligning the shape-model reference frame to the object during MAP optimization. This,
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(a) Evaluation Data (b) (c)

(d) High-Qual. Truth (e) Ours (f) Unet
[DSC = 1, Dist. = 0] [0.89,0.62] [0.86,1.32]

(g) SR-Unet (h) Unet+SW (i) MultiAtlas

[0.73,1.6] [0.76,1.02] [0.56,6.03]

Figure 5.8: Results on Clinical Brain MRI: Subcortical Structure Hippocampus.
Captions (a)–(i) same as in Figure 5.5.

we find that the inherent (albeit small) errors in expert segmentations cause problems for

ShapeWorks by leading to artificially inflated estimates of shape variability (Shigwan &

Awate (2016)), unlike our approach that uses a Bayesian approach during prior learn-

ing and allows points placements slightly off the expert-segmented object boundary. We

find that when ShapeWorks learns a prior from extra-smoothed low-quality segmenta-

tions, using surface smoothing to compensate for curation errors, it can lead to the loss of

the ability of the prior model (mean shape and covariance) to model subtle features and

variations in shapes, e.g., the high curvature region and the bending in the caudate (Fig-

ure 5.6(j)). Multiatlas segmentation (Figures 5.5(i), 5.6(i), 5.7(i), 5.8(i), 5.9(i)) introduces
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(a) Evaluation Data (b) (c)

(d) High-Qual. Truth (e) Ours (f) Unet
[DSC = 1, Dist. = 0] [0.91,0.64] [0.89,0.93]

(g) SR-Unet (h) Unet+SW (i) MultiAtlas

[0.84,0.91] [0.83,1.2] [0.65,6.16]

Figure 5.9: Results on Clinical Brain MRI: Subcortical Structure Putamen. Captions

(a)–(i) same as in Figure 5.5.

some errors from imperfect label-fusion because of the low-quality expert segmentations

in the atlas database; consistent with the analysis using a small-sized (even though good-

quality) atlas database in (Asman & Landman (2013)).

Unlike the pure-DNN methods (Unet, SR-Unet) and the DNN coupled with a shape

prior from ShapeWorks (Unet+SW), our method couples the Unet with a sparse Rie-

mannian prior that explicitly handles errors in low-quality segmentations in the training

set. DSCs and inter-surface distances, evaluated against high-quality expert segmenta-

tions (Figures 5.5(d), 5.6(d), 5.7(d), 5.8(d), 5.9(d)), for our method are better than those

from other methods (Figures 5.5(b)-(c),5.6(b)-(c),5.7(b)-(c), 5.8(b)-(c), 5.9(b)-(c)). Qual-
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itatively, the object boundaries estimated by our method (Figures 5.5(e), 5.6(e), 5.7(e),

5.8(e), 5.9(e)) show improved regularity, smoothness, and accuracy than those estimated

by other methods (Figures 5.5(f)–(i), 5.6(f)–(i), 5.7(f)–(i), 5.8(f)–(i), 5.9(f)-(i)). Some

DNN-based results show a bias in the estimated boundaries, distorting the object’s true

shape and pose.



Chapter 6

Hierarchical Shape Clustering in Shape
Space

In this chapter, we will see a modeling method for clustering given set of ordered pointsets

representing shape. After modeling the distribution over a group of shapes, we will model

a distribution over group mean, which effectively acts as a prior over group means. This is

a hierarchical model over shapes. Finally, we will introduce EM algorithm for hierarchical

clustering model in shape space.

Until now we have seen single probabilistic Gaussian shape models over set of

shapes, now we will build a hierarchical shape model of Gaussian mixture distribution.

Figure 6.1 shows the model.

6.1 Mathematical Notation

We consider N individuals in population. Let this population have M (unknown)

groups/clusters. Let data x := {xn}
N
n=1 represent the binary image of the segmented

anatomical object in individual n. Let y := {yn}
N
n=1 be the (unknown) pointset representing

object shape for individual n. Let Y := {Yn}
N
n=1 be corresponding hidden object shape vari-

able for individual n. Let z := {zm}
M
m=1 be the (unknown) pointset representing the mean

object shape for cluster m. Let C̄ := {Cm}
M
m=1 (unknown) model the covariance of shapes

in cluster m. Let µ be the (unknown) pointset representing the population-level mean

object shape and let (unknown) C model the associated covariance; µ and C capture the

variability of the group-mean shapes zm. Let ν̄ := {νn ∈ {1, 2, · · · ,M}}Nn=1 be the (hidden-

unknown) cluster-label associated data xn. Let w̄ := {wm}
M
m=1 (unknown) be mixture weight

for m-th cluster, with constraints
∑M

m=1 wm = 1 and wm ≥ 0. Let β (user-defined) repre-

43
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sent smoothness prior of distribution on mean shapes z. Let βm (user-defined) represent

smoothness prior of mixture component for cluster m.

Each shape-representing pointset (or shape pointset) has J points in 3D; so yn ∈ R
3J,

zm ∈ R
3J.

Let θ := {µ,C, C̄, w̄}. Since we have special hierarchical structure, as illustrated

in figure 6.1, we optimize probability of data given parameters as maxz,θ P(x|z, θ)P(z|θ)
instead of maxz,θ P(x|z, θ), so that we can take advantages of hierarchical structure, as ex-

plained in section 4.1. This additional term P(z|θ) provides benefits of hierarchical model

along with common coordinate system of shape registration, as we can refer alignment of

µ universal. This optimization can be further elaborated as follow,

max
z,θ

P(x|z, θ)P(z|θ) = max
z,θ

∫
P(x,Y, ν̄|z, θ)P(z|θ)dYdν̄ (6.1)

Now by Bayes rule and given each data individual is independent and identically

distributed, we get following split.

P(x,Y, ν̄|z, θ)P(z|θ) =

N∏
n=1

P(xn|yn)P(yn|νn, z, C̄)P(νn|θ)P(z|µ,C, β) (6.2)

Now,by Markov independent assumption, objective function in eq(6.1) can be writ-

ten as

N∏
n=1

M∑
m=1

∫
P(xn,Yn, νn = m|z, θ)P(z|θ)dYn =

N∏
n=1

M∑
m=1

∫
P(xn,Yn, νn = m|zm, θ)P(z|θ)dYn

(6.3)

=

N∏
n=1

M∑
m=1

∫
P(xn|Yn)P(Yn|νn = m, zm,Cm)P(νn = m|θ)P(z|µ,C, β)dYn (6.4)

We use equation (3.1) to model (i) conditional PDF P(zm|µ,C, β) of group mean

shapes zm (ii) the conditional PDF P(yn|zm,Cm, βm) of individual shapes yn (Shigwan &

Awate (2016)). We model wm := P(νn = m|θ) as a parameter of model, which is same for

each individual data xn.

6.2 Likelihood model

The proposed model relies on a dissimilarity measure ∆(xn, yn) between binary segmen-

tation xn and shape pointset yn, as defined in equation (3.3).

We model P(xn|yn) := exp(−∆(xn, yn))/κ, with normalization constant κ.
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Figure 6.1: Hierarchical Model

6.3 Model fitting

We use Monte-Carlo Expectation-Maximization (MC-EM) to find optimal parameters of

log-likelihood of objective function in eq.(6.4).

E-step.

Q(z, θ; zi, θi) =

N∑
n=1

EP(yn,νn |xn,zi,θi)[log(P(xn, yn, νn|z, θ)P(z|θ)]

=

N∑
n=1

M∑
m=1

∫
yn

P(yn, νn = m|xn, zm
i, θi)[log(

P(xn|yn)P(yn|νn = m, zm,Cm)P(νn = m|θ)P(z|µ,C))] dyn

=

N∑
n=1

M∑
m=1

∫
yn

P(yn, νn = m|xn, zm
i, θi)[log(

P(xn|yn)P(yn|νn = m, zm,Cm)P(νn = m|θ)P(zm|µ,C))] dyn + constant.

By Bayes rule, we get

P(yn, νn = m|xn, zi
m, θ

i) =

[
P(xn, yn|νn = m, zi

m, θ
i)

P(xn|zi
m, θ

i)

]
P(νn = m|θi)

=

[
P(xn, yn|zi

m, νn = m, θi)
P(xn|θi)

]
wi

m
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Hence by neglecting constant term,

Q(z, θ; zi, θi) =

N∑
n=1

M∑
m=1

∫
yn

P(xn, yn|zi
m, νn = m, θi)

P(xn|zi
m, θ

i)
wi

m[log(

P(xn|yn)P(yn|νn = m, zm,Cm, βm)wmP(zm|µ,C, β))] dyn

(6.5)

Let γnm represent membership of data xn to cluster m.

γnm = P(νn = m|xn, zi
m, θ

i)

=

∫
yn

P(yn, νn = m|xn, zm, θ
i) dyn

=

∫
yn

P(xn, yn|νn = m, zi
m, θ

i)
P(xn|zi

m, θ
i)

P(νn = m|θi) dyn

=

∫
yn

P(xn, yn|νn = m, zi
m, θ

i)
P(xn|zi

m, θ
i)

wi
m dyn

=

∫
yn

P(xn|yn)P(yn|νn = m, zi
m, θ

i)
P(xn|zi

m, θ
i)

wi
m dyn

(6.6)

Now membership γnm in eq(6.6) is intractable to calculate exactly, so we approxi-

mate integration by Monte-Carlo Sampling. Let S -samples drawn from joint distribution

{ys
n}

S
s=1 ∼ P(Yn|νn = m, zi

m, θ
i), then we define γs

nm as follow.

γs
nm :=

P(xn|y
s
n)wi

m∑M
m′=1

∑S
s′=1 P(xn|ys′

n )wi
m′

(6.7)

Finally Q(z, θ; zi, θi) becomes,

Q(z, θ; zi, θi) =

N∑
n=1

M∑
m=1

S∑
s=1

γs
nm[log(

P(xn|y
s
n)P(ys

n|νn = m, zm,Cm, βm)wmP(zm|µ,C, β))]

(6.8)

For sampling from P(Yn|νn = m, zi
m, θ

i), we used our novel Riemannian leapfrog

sampling method, introduced in section 3.6.

M-step.

We will find optimal parameters {z, θ} by maximizing Q(z, θ; zi, θi) in eq(6.8). Up-

date for {µ,C, {Cm}
M
m=1} are similar to updates in (Shigwan & Awate (2016)).

Update µ is given by

min
µ

1∑N
n′=1

∑M
m′=1

∑S
s′=1 γ

s′
n′m′

S∑
s=1

M∑
m=1

 N∑
n=1

γs
nm

 Logµ(zm)>C−1Logµ(zm) such that ‖µ‖2 = 1.

(6.9)
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Update zm is given by

min
zm

1∑N
n′=1

∑S
s′=1 γ

s′
n′m

S∑
s=1

 N∑
n=1

γs
nmLogzm

(ys
n)>C−1

m Logzm
(ys

n)

 + Logµ(zm)>C−1Logµ(zm)


such that ‖zm‖2 = 1.

(6.10)

We use projected gradient descent (A.2 derives the gradient), where the projection rescales

the updated means µ and {zm}
M
m=1 to unit norm, as explained in section 3.5.

Update C is given by,

C′new =
1∑N

n′=1
∑M

m′=1
∑S

s′=1 γ
s′
n′m′

M∑
m=1

S∑
s=1

 N∑
n=1

γs
nm

 Logµ(zm)Logµ(zm)>

Cnew = [(C′new)−1 − βΩ]−1

(6.11)

Update Cm is given by,

C′new
m =

1∑N
n′=1

∑S
s′=1 γ

s′
n′m

S∑
s=1

N∑
n=1

γs
nmLogzm

(ys
n)Logzm

(ys
n)>

Cnew
m = [(C′new

m )−1 − βmΩ]−1

(6.12)

Update wm is given by,

wm has additional constraints that
∑M

m=1 wm = 1 and wm ≥ 0. If we maximize

Q(z, θ; zi, θi) in eq(6.8) with these constraints, then we get following update.

wm =

∑N
n=1 γnm∑M

m′=1
∑N

n′=1 γn′m′
=

∑N
n=1 γnm

N
(6.13)

6.4 Results: Riemannian Mixture Shape Clustering

We present the results of shape clustering using our method for hierarchical shape mod-

eling and inference. We have implemented our model in MATLAB programming en-

vironment without any external library support. We have compared our method with a

state-of-the-art pointset-based shape analysis approach named VBMixPCA (Gooya et al.

(2018)) that differs from our approach in many ways as follows. First, VBMixPCA con-

straints the points to be placed (at real-valued sub-voxel locations) on the zero level set

associated with the distance transform of the object boundary represented by the segmen-

tation; in this way, it becomes sensitive to the (inevitable) errors in manual segmentation.

Second, is does not rely on a hierarchical modeling approach. Third, it assumes an initial

alignment of the segmentations and does not align them during inference. Fourth, VB-

MixPCA treats the group means as parameters instead of random variables. To evaluate
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(a) (b) (c) (d)
Figure 6.2: Results: Shape Clustering on Simulated Ellipsoidal Data. (a) Ground truth

segmentation. (b) Corrupted segmentation (data), mimicking human errors. (c) Accuracy

boxplot over 5 noisy instances of ellipsoid data for Ours and VBMixPCA. (d) Estimated

population cluster mean from our method.

(a) (b) (c) (d) (e) (f)
Figure 6.3: Results: Shape Clustering on Simulated Ellipsoidal Data. (a)-(c) Our

method’s MAP estimates for group means z1, z2 and z3. (d)-(f) VBMixPCA’s estimates

for group means z1, z2 and z3.

VBMixPCA, we first align all the images using similarity-transform based registration,

and then give the aligned segmentations, of all groups, to VBMixPCA to compute the op-

timal point placement and shape mean, modes for each group. Now, we make the scale of

the mean-shape pointsets and individual-shape pointsets obtained by VBMixPCA com-

mensurate to that of our approach as follows. For each group, we center the mean shape

so that its centroid is at the origin, rescale the mean shape to unit norm, and then apply the

same group-specific centering and rescaling to each member of the group. We evaluate

the methods on simulated ellipsoid data.

6.4.1 Results: Shape Clustering on Simulated Ellipsoidal Data

As described in Section 4.2.1, we simulate three groups of 32 ellipsoids represented

as binary segmentation images, where the true single mode of shape variation changes the

length of the major axis of the ellipsoid over a specified range.

The range of the variations across consecutive groups slightly overlap. We also

introduce surface perturbations in the form of bumps and pits to these binary segmen-

tations to mimic human errors in labeling (Figure 6.2(a)-(b)). The estimates of group

means (Figure 6.3) and modes of variation (Figure 6.4,6.5,6.6) from our method indicate

(i) smoother and more accurate group means and (ii) modes of variation that indicate
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Figure 6.4: Results: Shape Clustering on Simulated Ellipsoidal Data. Estimated prin-

cipal mode of variation of group-1 for our method and VBMixPCA.
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Figure 6.5: Results: Shape Clustering on Simulated Ellipsoidal Data. Estimated prin-

cipal mode of variation of group-2 for our method and VBMixPCA.
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Figure 6.6: Results: Shape Clustering on Simulated Ellipsoidal Data. Estimated prin-

cipal mode of variation of group-3 for our method and VBMixPCA.

smoother and more accurate shape variations, compared to VBMixPCA, which has cap-

tured more noisy due to absence of internal regularization. Clustering accuracy are shown

in Figure 6.2(c). Clustering accuracy Acc is defined as follows

Acc =
count of correctly predicted label

count of total individuals
, (6.14)

and predicted label of individual is nothing but a label, which has maximum membership

for that individual.



Chapter 7

Conclusion

Several approaches to shape modeling, e.g., diffeomorphic deformation models, medial

models, point distribution models, etc., are active research areas in their own right, each

with its benefits and limitations. This work proposes a novel hierarchical generative

model for statistical shape analysis using point distribution models, which leverages the

characteristics of the pointsets lying in Kendall shape space. Our model is aware that,

during learning, the manual segmentations will naturally exhibit human errors in practical

deployment scenarios. The hierarchical modeling can help regularize the estimates of

group distributions, through the effect of population-level variables. We propose a novel

Monte-Carlo EM algorithm for model fitting to the multigroup data, which leverages our

MCMC algorithm for sampling shapes from distributions in Kendall shape space.

We evaluate the proposed hierarchical modeling framework for hypothesis testing.

Results on simulated data show the benefits of hierarchical modeling in (i) reducing the

risk of false positives in rejecting the null hypothesis and (ii) reducing the sensitivity of

the estimated per-group shape distributions to low sample sizes. For clinical datasets in-

volving CT imaging of carpal bones, our approach leads to lower p-values even when we

introduce errors in the manual segmentations to mimic human errors, compared to a pop-

ular framework for point-distribution based shape models. For Bayesian object segmen-

tation using statistical shape priors, learned from a training set of manual segmentations

using our hierarchical modeling and inference scheme, we propose a novel formulation

that extends popular multiatlas segmentation methods and deep neural-net methods by

introducing shape-distribution based regularization in Riemannian shape space. For hier-

archical shape clustering framework based on Riemannian mixture component, we have

performed our analysis on simulated ellipsoidal data. Results on simulated data show the

benefits of hierarchical modeling in (i) getting high accuracy in very noisy conditions (ii)

reducing sensitivity of estimated clusters and mean shape of clusters to noisy perturba-
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tions. Our ongoing and future work involves exploring the applications of the proposed

framework for other applications in shape analysis, e.g., shape completion and classifica-

tion. One could also explore a “fully” Bayesian scheme that treats the group covariances

Cm also as latent variables, introducing a hyper-prior on them at the population level.



Appendix A

Appendices

A.1 Gradients of the Log-Likelihood With Respect to

Similarity Transform Parameters

The gradients of J(Smi) with respect to parameters t, s, and R are as follows.

∇sJ(Smi) =

S∑
s=1

( J∑
j=1

2Dxmi(Smiy
s
mi j)∇Dxmi(Smiy

s
mi j)

>(Rys
mi j)

+

L∑
l=1

2(Smiy
s
mi j′ −Z

l
xmi

)>(Rys
mi j)

)
. (A.1)

∇tJ(Smi) =

S∑
s=1

( J∑
j=1

2Dxmi(Smiy
s
mi j)∇Dxmi(Smiy

s
mi j)

+

L∑
l=1

2(Smiy
s
mi j′ −Z

l
xmi

)

)
. (A.2)

∇RJ(Smi) =

S∑
s=1

( J∑
j=1

2Dxmi(Smiy
s
mi j)∇Dxmi(Smiy

s
mi j)(sy

s
mi j)

>

+

L∑
l=1

2(Smi(ys
mi j′) −Z

l
xmi

)(sys
mi j)

>

)
. (A.3)

A.2 Gradients of Mahalanobis distance in Riemannian

Space

According to (Pennec (2006)), given µ and z are on unit hypersphere,

Logµ(z) := cos−1(µ>z)
(z − (µ>z)µ)
‖z − (µ>z)µ‖2

. (A.4)
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Figure A.1: Difference between the Riemannian distance and the Euclidean distance as

a function of the arc length in radians.

For given covariance C squared Mahalanobis distance is

Logµ(z)>C−1Logµ(z)

:= (cos−1(µ>z))2 (z − (µ>z)µ)>C−1(z − (µ>z)µ)
‖(z − (µ>z)µ)‖22

:= (cos−1(µ>z))2 (z>C−1z − 2(µ>z)(µ>C−1z) + (µ>z)2(µ>C−1µ))
1 − (µ>z)2

. (A.5)

∂Logµ(z)>C−1Logµ(z)

∂µ

:=
−2z cos−1(µ>z)√

1 − (µ>z)2

(z>C−1z − 2(µ>z)(µ>C−1z) + (µ>z)2(µ>C−1µ))
1 − (µ>z)2

+ (cos−1(µ>z))2 (−2(1 − µ>z)(z(µ>C−1(z − µ)) + (µ>z)C−1(z − µ))
1 − (µ>z)2

+
2z(µ>z)(z>C−1z − 2(µ>z)(µ>C−1z) + (µ>z)2(µ>C−1µ))

(1 − (µ>z)2)2

. (A.6)

∂Logµ(z)>C−1Logµ(z)

∂ z

:=
−2µ cos−1(µ>z)√

1 − (µ>z)2

(z>C−1z − 2(µ>z)(µ>C−1z) + (µ>z)2(µ>C−1µ))
1 − (µ>z)2

+ (cos−1(µ>z))2 2C−1z − 2µ(µ>C−1z) − 2(µ>z)(C−1µ) + 2(µ>z)µ(µ>C−1µ)
1 − (µ>z)2

+
2µ(µ>z)(z>C−1z − 2(µ>z)(µ>C−1z) + (µ>z)2(µ>C−1µ))

(1 − (µ>z)2)2

. (A.7)
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A.3 Approximating the Normalizing Factor in

Riemannian Space

According to (Pennec (2006)), given µ and z are on unit hypersphere,

Logµ(z) := cos−1(µ>z)
(z − (µ>z)µ)
‖z − (µ>z)µ‖2

. (A.8)

The distance between µ and z on the unit hypersphere is ‖Logµ(z)‖2 = cos−1(µ>z). If µ

and z are sufficiently close, then we can approximate Logµ(z) by z − µ. We now analyze

the quality of this approximation. Let the residual be O := ‖Logµ(z)‖2 − ‖z − µ‖2 =

cos−1(µ>z) −
√

2 − 2µ>z. Let θ = cos−1(µ>z) be the angle between the two unit vector

µ and z. Then O = θ −
√

2 − 2 cos(θ). Figure A.1 shows the graph of O versus θ, for

θ between 0 to 1 radians. Thus, for shape pointsets that are within ±0.6 radians from

the mean shape, the residual between the two lengths is less than 1% the radius of the

hypersphere.
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