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Abstract

Today, mental health issues are prevalent, which makes the diagnosis and prognosis of neurological

diseases crucial from a clinical perspective. Addressing mental health on a broad scale presents

challenges in terms of both cost and time. Although psychiatrists typically address mental health

through therapy and counseling, the effectiveness of these approaches varies from person to person.

Therefore, noninvasive techniques such as diffusion tensor imaging (DTI) play a vital role in providing

quantitative measurements that assist in assessing mental health. Understanding the structure of white

matter is key to diagnosing and predicting mental health conditions accurately. Moreover, it is essential

to have quantitative measurements that are unbiased and can be deployed on a large scale. These DTI

quantitative parameters can be acquired in large scale in less amount of time using sparse diffusion

MRI.

Sparse diffusion MRI, which can be acquired by small diffusion measurements, presents challenges due

to limited diffusion directions and inherent noise. Deep learning has emerged as a promising approach

to resolved these problem compare to traditional methods. Our thesis introduces a novel Deep Learning

Based Framework for DTI Parameter Estimation and Analysis tailored to sparse diffusion MRI data.

This framework, incorporating Transformer Neural Network and Convolutional Neural Network (CNN),

aims to overcome the limitations of traditional DTI reconstruction methods.

We conducted experiments on various datasets, including the Human Connectome Project (HCP)

which is high resolution, the MICCAI Quad22 Migraine dataset, the National Institute of Mental

Health Data (NIFD), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) which are mental

health diseases with lower resolution. Our findings show that our framework effectively improves DTI

parameter estimation and analysis for sparse diffusion MRI data. These results contribute to advancing

our understanding of brain connectivity and neurodegenerative diseases, with implications for future

neuroimaging research.

Keywords: Diffusion MRI, Deep learning, Tractography, Neurological disorders
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Chapter 1

Introduction

The correct diagnosis and prognosis of neurological diseases from a clinical perspective is crucial, given the

prevalence of mental health issues in today’s society[8]. However, access to comprehensive mental health

treatment is hampered by significant scheduling and budgetary constraints[9]. Traditional psychotherapy

and counseling methods are helpful, but their effectiveness varies widely between individuals[10]. Precise

quantitative measurements are essential for the assessment of mental health issues, which makes non-

invasive methods such as diffusion tensor imaging (DTI) invaluable [11]. Accurate diagnosis and prognosis

of mental health issues require an in-depth understanding of white matter anatomy [12]. Nevertheless,

current existing techniques have drawbacks, including limited diffusion directions and intrinsic noise [13].

In response to these challenges, deep learning offers a potential alternative for traditional

techniques[13]. This thesis provides a novel Deep Learning Based Framework for DTI Parameter

Estimation and Analysis of sparse diffusion MRI data. By merging Transformer Neural Network and

Convolutional Neural Network (CNN), our methodology aims to address the shortcomings of traditional

DTI reconstruction methods and enable the acquisition of DTI quantitative data on a large scale in a

significantly shorter amount of time.

Axons, or nerve fibers coated in myelin, make up the majority of white matter, a vital component of

the central nervous system[14]. The myelin sheath, which promotes effective signal transmission between

various brain and spinal cord regions, gives it, its white matter[15]. Understanding white matter is

crucial because it offers valuable applications and crucial insights into the workings of the brain. Several

neurological and mental disorders, such as depression, schizophrenia, and Alzheimer’s disease, have been

linked to white matter abnormalities[16]. Examining[17] the composition and role of white matter in

various diseases can provide insight into the underlying degenerative mechanisms, potentially paving the

way for the discovery of improved treatment strategies.

1



Introduction 2

1.1 Motivation

The tissue found in the central nervous system is mainly made up of nerve fibers (axons) and the fatty

material known as myelin, which envelops and insulates these fibers, is referred to as white matter[18].

The myelin coating, which gives it a white look, is the reason it is termed white. Signals can be transmitted

more easily between various parts of the brain and spinal cord due to the communication network that

is white matter[19]. The development of connections between neurons facilitates the transmission of

information between different parts of the brain, enabling the coordination of motor and sensory activities,

as well as higher cognitive processes.

The exploration of brain white matter holds significant importance for two key reasons: first, it can

help us understand how the human brain works, and second, it has clinical implications. A wide range of

neurological and psychiatric conditions, including schizophrenia, multiple sclerosis, Alzheimer’s disease,

depression, and anxiety disorders, have been linked to abnormalities in white matter[20, 21]. Assessing the

composition and capabilities of white matter under these circumstances can shed light on the fundamental

processes leading to degeneration and facilitate the creation of more effective therapies[22, 23].

Figure 1.1: General description of the white matter and grey matter that make up the brain’s tissue.
Neural cell bodies and dendrites are found in the grey matter, whereas axons are found in the white matter
and are responsible for connecting distant neurons. Source: https://www.osmosis.org/learn/Anatomy of
the white matter tracts.

Furthermore, understanding of brain white matter is essential to understanding normal brain function

and the underlying mechanisms of brain activity. For example, white matter changes significantly during

the early stages of brain development, from infancy to childhood. We can learn a great deal about brain

development and normal brain function by monitoring and measuring these changes[24, 25]. Later, with

this knowledge, it will be easier to create more successful treatments that target white matter pathways

in order to improve cognitive abilities and quality of life.

Numerous methods can be used to study the white matter of the brain. Among the most popular

techniques are:

Tracer[26] One of the more established methods of identifying the white matter pathways is the use

of tracers, which are chemicals injected into the brain that label specific nerve fibers with a particular
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color. Once the brain has been dissected, the connections indicated by the tracer can be seen. Over the

years, the mapping of brain connections for several species has benefited greatly from the use of tracers.

Although the tracer approach is a direct means of observing connections, it is severely limited by artifacts

caused by leaks, intrusiveness, and the excessive sacrifices required.

Histology[27]: Examining tissue under a microscope is known as histology, and it is one more way

to look into white matter. Similar to tracers, chemicals can be used to ”stain” white matter samples in

order to identify specific materials such as myelin, microglia, Nissl bodies, etc. Histology is particularly

useful for researching how diseases and pathologies affect the microstructure of white matter. However,

due to its invasiveness, small sample size, and difficulties with quantification, its application is limited in

many circumstances.

Structural Magnetic Resonance Imaging (MRI)[28]: Images of the structures of the brain

are obtained by using specific MRI modalities, such as T1, T2, and FLAIR acquisitions. Due to their

ability to detect a wide range of brain abnormalities, such as tumors, white matter lesions, and other

abnormalities, these modalities have become indispensable in clinical practice. The ability to obtain

comprehensive measurements of the entire brain and the non-invasive nature of these MRI techniques

are their main advantages. Their sensitivity, which typically only permits the detection of significant

alterations, is a notable drawback, as it frequently leads to diagnoses in the later stages of disease

progression.

Diffusion MRI (dMRI)[29]: This type of magnetic resonance imaging (MRI) is sensitive to the

movement of water molecules within tissue as a result of diffusion. This method detects the direction

and velocity of water molecules to provide information about the local orientation and strength of white

matter connections at every location throughout the brain. The benefit of dMRI is that it is non-invasive

and has the capacity to scan the entire brain simultaneously; however, its drawback is that it is noisy.

Understanding and diagnosing neurodegenerative diseases are greatly aided by the complex dynamics

of water flow within the brain[30, 31]. One non-invasive technique that has gained popularity is Diffusion

Tensor Imaging (DTI), which provides information about white matter pathways. However, because of

its precision, lengthy scan times are required, which can be problematic for some patient populations,

especially pediatric patients[5, 32]. In order to tackle this issue, researchers have investigated deep

learning methodologies to expedite the DTI parameter estimation from diffusion-weighted images, an

essential task for neurological diagnosis[33, 34].

In order to quickly estimate diffusion tensor parameters, this thesis presents a novel method that

makes use of a transformer model based on neural networks. Despite sparse measurements, the suggested

approach performs exceptionally well in managing scalable and generalized estimation, outperforming

earlier attempts to tackle this problem. Our model outperforms conventional methods in terms of mean

diffusivity (MD), axial diffusivity (AD), and fractional anisotropy (FA) in experiments conducted on the

Human Connectome Project (HCP) Young Adult benchmark dataset.

By concentrating on particular neurodegenerative illnesses, our work makes a substantial contribution
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to early diagnosis of frontotemporal dementia (FTD). Since FTD affects the frontal and temporal lobes, an

accurate diagnosis is crucial to timely intervention. Using sparse diffusion measures, our research proposes

a novel deep learning framework for the estimated 1.2 to 1.8 million affected people worldwide. This novel

method effectively differentiates between healthy people and those who have FTD, providing encouraging

findings for improving FTD diagnosis and opening the door for more research in this important area.

Now, turning to Alzheimer’s disease, a common neurodegenerative disease that affects 6.2 million

people in the US alone, this research addresses the difficulties associated with early diagnosis. The

Diffusion Weighted Imaging (DWI) process is a major bottleneck because it takes more than three hours to

complete. Our proposed Transformer-based deep learning model, incorporating an attention mechanism,

drastically reduces scanning time and generates accurate quantitative measures of MD, AxD, and FA.

Our model offers a viable path for the early diagnosis and treatment of Alzheimer’s disease, having

proven its superiority over traditional techniques. Finally, our ground-breaking work has the potential

to significantly improve the early detection and treatment of several neurodegenerative diseases. In this

crucial field of medical research, the open-access repository offers a useful tool for additional investigation

and collaboration.

1.2 Research Objectives

• Development of Efficient DTI Estimation from sparse data

We aim to create a transformer neural network-based novel method (SwinDTI) for the quick and

accurate estimation of diffusion tensor parameters from sparse DWI data. The objective is to tackle

persistent issues such as longer scan times, lower resolution, noise sensitivity, and limited ability to

generalize in different diffusion directions.

• Improving Quality of quantitative measure using sparse measurement

Determining how well deep learning methods improve quantitative measure using sparse

measurement for clinical applications was the next goal. The assessment of the influence of

angular resolution on dMRI was our main focus, and we also examined the possibility of losing

important clinical information or creating false information when using AI techniques in medical

images. Using deep learning to improve diffusion metrics and yield results that were on par with

those obtained from more gradient directions was the goal.

• Enhancing FTD Diagnosis

Our next goal was to improve Frontotemporal Dementia (FTD) diagnosis by implementing a deep

learning framework. The goal of this framework is to increase the diagnostic accuracy of FTD

by utilizing sparse diffusion measures that are extracted from neuroimaging data. By using the

Swin-Transformer, the method is able to reduce scanning time compared to traditional methods

and existing deep learning techniques, and achieve higher diagnostic precision for FTD.
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• Accelerating Alzheimer’s Disease Diagnosis

The centers around expediting the diagnosis of Alzheimer’s disease through the introduction of

a deep learning model based on Swin-Transformer attention. The goal is to derive quantitative

measures (FA, AxD, MD) utilizing sparse diffusion directions data, allowing for efficient clinical

diagnosis with decreased scanning time, all the while ensuring precise identification of early-stage

Alzheimer’s disease.

In summary, the research objectives involve the creation of novel methods, frameworks, and

models to tackle particular difficulties in neuroimaging and clinical diagnosis. The ultimate goal is

to enhance the accuracy, efficiency, and applicability of these approaches in actual medical

environments.

1.3 Contribution of the Thesis

The thesis contributes significantly to the field of neuroimaging and clinical diagnosis. The key

contributions can be outlined as follows:

Innovative DTI Estimation Method (SwinDTI): The thesis introduces a novel approach, SwinDTI,

for efficiently estimating diffusion tensor parameters from sparse DWI data using a transformer

neural network. This method addresses the limitations of existing techniques, such as long scan

times and limited generalization across different diffusion directions. SwinDTI leverages advanced

attention mechanisms and patch-based processing, making a notable contribution to the field of

neuroimaging by enabling fast and accurate DTI estimation.

Advancements of quantitative measure using sparse measurement: The thesis evaluates the efficacy

of deep learning techniques in enhancing the quality of quantitative measure for help in biomarker

decision making over chronic migraine and episodic migraine. By investigating the impact of angular

resolution in diffusion MRI and challenging multiple teams to utilize deep learning for improving

diffusion metrics, the thesis contributes to the understanding of the role of AI methods in medical

imaging and the potential challenges associated with such applications. Additionally, it provides

insights into maintaining data integrity and accuracy in clinical settings while employing advanced

AI methodologies.

Enhanced FTD Diagnosis Framework: The thesis proposes a deep learning framework, leveraging

Swin-Transformer, for improving the diagnosis of Frontotemporal Dementia (FTD). By utilizing

sparse diffusion measures from neuroimaging data, the framework enhances the accuracy of FTD

diagnosis while significantly reducing scanning time compared to conventional methods and

existing deep learning techniques. This contribution is particularly valuable in the realm of

neurodegenerative disorder diagnostics.

Accelerated Alzheimer’s Disease Diagnosis Model: The thesis introduces a Swin-Transformer
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attention-based deep learning model designed to expedite the diagnosis of Alzheimer’s disease. By

extracting quantitative measures, including fractional anisotropy (FA), axial diffusivity (AxD),

and mean diffusivity (MD), from sparse diffusion directions, the model facilitates rapid and

accurate early-stage diagnosis, thereby significantly contributing to the effective management and

treatment of this prevalent neurodegenerative disorder.

In summary, the thesis makes significant contributions to the advancement of neuroimaging

techniques, deep learning applications in clinical diagnostics, and the understanding of the impact

of AI methodologies on medical imaging data. Its contributions significantly enhance the

accuracy, efficiency, and reliability of neuroimaging analysis, thereby paving the way for improved

diagnostic capabilities and better treatment outcomes in the field of neurodegenerative disorders.

1.4 Overview of the Thesis

The thesis offers a comprehensive overview of the development and application of innovative

techniques in neuroimaging and clinical diagnostics. The following summarizes the major

contributions:

The Innovative DTI Estimation Method (SwinDTI), which employs a transformer neural network to

efficiently estimate diffusion tensor parameters from sparse DWI data, is a novel approach presented

in the thesis. This approach addresses the drawbacks of earlier techniques, including long scan

times and limited generalization in different diffusion directions. SwinDTI, which uses sophisticated

attention mechanisms and patch-based processing to provide a fast and accurate estimation of DTI,

is an major advancement in neuroimaging.

Assessment of Deep Learning Methods to improve the quantitative measure using sparse

measurement: Furthermore, the thesis assesses how well deep learning methods work to improve

the quality of quantitative measure using sparse measurement for decision making over chronic

migraine and episodic migraine. By concentrating on the dMRI’s angular resolution and the

possible applications of AI techniques in medical imaging. The thesis also provides a critical

analysis of how well different teams performed in comparison to traditional methods, based on a

thorough evaluation of the outcomes they achieved by utilizing deep learning techniques to

improve diffusion metrics.

Improved Framework for Deep Learning-Based FTD Diagnosis: The thesis then explores the

difficulties in diagnosing frontotemporal dementia (FTD) and presents a deep learning framework

that makes use of Swin-Transformer to improve the accuracy of FTD diagnosis. This highlights

the framework’s ability to use neuroimaging data’s sparse diffusion measures, which improves

diagnostic capabilities while cutting scanning time, and offers insights into its possible uses in

clinical settings.
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Figure 1.2: Overview of Thesis with an in-depth look at the proposed architecture outlined in Fig. 3.1.

Faster Diagnosis of Alzheimer’s Disease with Deep Learning Model: This thesis presents an

attention-based deep learning model based on Swin-Transformer and delves deeper into the

difficulties associated with Alzheimer’s disease diagnosis. This model is intended to enable quick

and precise early-stage diagnosis by extracting critical quantitative measures from sparse diffusion

directions. By offering an in-depth understanding of the model’s applications in actual clinical

settings, the highlights the model’s potential impact on improving the management and treatment

of Alzheimer’s disease.

In conclusion, the thesis offers a thorough analysis of the difficulties and constraints associated with

neuroimaging and clinical diagnostics, along with cutting-edge approaches and solutions to these

problems. It highlights how sophisticated deep learning techniques can transform the field and how

they can improve data quality, efficiency, and accuracy in a variety of clinical applications.
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Chapter 2

Background and Related Work

2.1 Introduction to Diffusion Phenomena in Biological

Systems

Botanist Robert Brown[35] first proposed the idea of diffusion in 1828 after he used a microscope

to record the erratic movement of pollen particles suspended in water. The principles of diffusion

were later formalized by Albert Einstein in 1905, when he defined it as the unrestricted motion of

particles[36]. However, barriers and cell structures impose restrictions on the movement of water

molecules in biological tissues, resulting in categories such as hindered and restricted diffusion[16,

37].

Although physics and chemistry were the original fields in which the principles of diffusion were

conceived, applying these concepts to biological systems presents special difficulties. Water

molecules in biological tissues are subject to restrictions imposed by cell structures and other

impediments. As a result, various diffusion patterns, including limited and impeded diffusion,

have been identified[16, 37]. Deciphering these subtleties is crucial to understanding the

intricacies of diffusion in living things.

Because of their complex cellular structure, biological tissues give rise to phenomena other than

the traditional unrestricted diffusion. The restricted movement of molecules inside cellular

compartments, like organelles or cellular membranes, is referred to as restricted diffusion.

Conversely, hindered diffusion refers to barriers in the extracellular matrix or closely spaced

cellular environments that impede the movement of molecules[16, 37]. Significant ramifications

flow from these classifications for understanding diffusion phenomena in biological settings.

Technological developments in imaging have been essential in explaining diffusion processes in

biological systems. Non-invasive methods to investigate the mobility of water molecules in living

tissues include diffusion-weighted magnetic resonance imaging (DW-MRI) and diffusion tensor

8



Background and Related Work 9

imaging (DTI)[37, 38]. These instruments enhance our comprehension of physiological and

pathological processes by providing insightful information about the temporal and spatial

dynamics of diffusion.

Diffusion in biological systems is a subject with practical applications in biology and medicine,

going beyond theoretical comprehension. A wide range of medical conditions, such as cancer,

neurological disorders, and cardiovascular diseases, are diagnosed and tracked with

diffusion-weighted imaging[37]. Furthermore, the principles of diffusion are important in the

delivery of drugs and have implications for the design of focused therapeutic approaches.

The understanding of diffusion in biological systems has advanced significantly, but difficulties still

exist. Sufficient spatial and temporal resolution in imaging techniques, the dynamic nature of living

organisms, and the variability in tissue properties[16]. By tackling these issues, we will be able to

gain a deeper understanding of diffusion phenomena and make this knowledge more useful in diverse

scientific and medical fields.

2.2 Evolution of Diffusion Magnetic Resonance Imaging

(dMRI)

Prior to the development of magnetic resonance imaging (MRI) in the 1970s, water diffusion in a

variety of media samples was the primary focus of groundbreaking nuclear magnetic resonance

(NMR) experiments carried out in the 1950s[39]. When Stejskal and Tanner presented the first

diffusion-weighted sequence in 1965[40], they achieved a major breakthrough by incorporating

gradient pulses into the spin-echo sequence. This novel method not only made measuring diffusion

coefficients in NMR signals easier, but it also set the stage for the development of diffusion MRI.

A significant turning point in this trajectory was the introduction of the b-value, a critical

parameter quantifying diffusion sensitization[41, 42].

Numerous studies have highlighted the age-related decline in the trajectory of cognitive functions,

particularly fluid intelligence and memory[43, 44]. Multiple orders of magnitude of structural

changes in the brain are closely associated with this decline. Traditional structural MRI studies

provide macroscopic insights into these age-related changes, showing a significant decrease in both

white and grey matter volume after the fifth decade of life[30, 45]. These macroscopic alterations

surpass the direct resolution limit of current MRI technologies and intricate details are hard to

capture[46].

Fortunately, diffusion MRI (dMRI) has emerged as an effective modality that offers insights at the

micrometric scale for the in vivo investigation of water diffusion. Using the microscopic

displacements of water molecules brought about by diffusion, dMRI overcomes the limitations of

image voxels’ typical resolution [47, 48].

Department of Computer Science and Engineering, Shiv Nadar Institution of Eminence, India



Background and Related Work 10

Numerous methods[49] have been developed to extract fine-grained microstructural details from

dMRI maps due to the wealth of information contained in these images. DTI is a notable and

impactful dMRI technique among these methodologies[50]. Since diffusion is restricted in some

directions by barriers like axon membranes and myelin sheaths, diffusive transfer imaging (DTI)

aims to measure the anisotropy of diffusion in biological tissues. Hence, decreases in diffusion

anisotropy function as markers of microstructural degenerative processes, such as fiber

demyelination and axonal loss.

In addition, DTI allows 3D maps to be reconstructed, showing the main paths taken by white matter

fibers. Through a relationship between the orientation of individual fiber axons and the direction

of maximum diffusion, tractography is a technique that has been widely used to examine the

complex structure of white matter connections in the brain[51, 52]. Such efforts make a substantial

contribution to the detailed understanding of the microstructural modifications that underlie age-

related changes in brain connectivity and cognitive decline.

2.3 Diffusion-weighted Imaging (DWI) and Diffusion Tensor

Imaging (DTI)

Diffusion-weighted images (DWIs) become an effective tool by combining the Stejskal and Tanner

sequence with an MRI space-encoding gradient, identifying changes in signal intensity that

correspond to different diffusion rates. Brain DWIs demonstrate low signal intensities in areas

where diffusion is unrestricted, such as the cerebral ventricles. Diffusion coefficient estimation is

made possible by acquiring DWIs at various b-values, which provides important information

about tissue microstructure. However, it is important to remember that the formalism of Stejskal

and Tanner does not take into account the complex effects of diffusion in biological tissues. As a

result, diffusion estimates depend on acquisition parameters, which is particularly obvious when

considering diffusion anisotropy in brain images.

Basser et al. (1994) introduced diffusion tensor imaging (DTI), a groundbreaking diffusion

magnetic resonance imaging (dMRI) technique that significantly advances brain water diffusion

anisotropy modeling[50]. With the use of the diffusion tensor, a second-order tensor that provides

detailed information about tissue microstructure, DTI represents diffusion. The eigenvectors and

eigenvalues of the tensor provide information about the direction and intensity of diffusion, which

allows rotationally invariant measurements like mean diffusivity (MD), radial diffusivity (RD),

and axial diffusivity (AD) to be calculated.

Within the context of cognitive aging, in which memory and fluid intelligence show a noticeable

degradation with aging, the brain suffers structural changes on several levels. Traditional structural

MRIs indicate large decreases in both white and grey matter volume after a certain threshold age,
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indicating macroscopic changes. But prior microstructural alterations, such as cell loss, fiber loss,

and demyelination, which go beyond the direct resolution limits of traditional MRI methods, remain

unnoticed by these outwardly visible alterations.

Diffusion tensor imaging (DTI) and diffusion-weighted imaging (DWI) become essential techniques

in this regard for exploring and understanding the subtle aspects of microstructural alterations

in biological tissues. DWI is a technique that is used in conjunction with magnetic resonance

imaging (MRI) to detect the diffusion of water molecules in tissues. This modality goes beyond the

traditional resolution of image voxels by taking advantage of the micrometric scale displacements

of water molecules.

A number of methods have been developed to extract different microstructural details from DWI

maps because of the abundance of information they contain. Within DTI, it measures the anisotropy

of diffusion inside biological tissues based on the hypothesis that diffusion meets barriers along

certain directions, like axon membranes and myelin sheaths[50]. Decreases in diffusion anisotropy,

therefore, can be used as markers for underlying microstructural degradation processes like axonal

loss and fiber demyelination.

Additionally, by connecting the orientation of individual fiber axons with the direction of

maximum diffusion, DTI makes it easier to reconstruct three-dimensional maps that show the

principal trajectories of white matter fibers. Examining the complex architecture of white matter

connections in the brain is made possible by the use of a method called tractography. These

developments greatly aid in the process of identifying the microstructural basis of age-related

changes in brain connectivity as well as cognitive decline. The physical structure of the tissues is

directly correlated with the diffusion coefficient. Since each anatomical region of the brain has an

underlying structure that can be inferred[53], researching the DTI parameters can provide

excellent details about any anomalies that may be present.

Recently, the field of diffusion tensor imaging (DTI) has moved towards parameter estimation using

deep learning techniques[1, 54]. Q-space deep learning was the first deep learning technique applied

to a comparable task[55]. This technique reduced the number of measurements by a factor of twelve

by estimating diffusion kurtosis using a dense neural network consisting of three layers. After the

q-space deep learning method proved to be successful, scientists started concentrating on other

voxel-level diffusion parameter estimations[56].Deep neural networks outperform traditional linear

least square methods in the estimation of fiber orientations, as many researchers have successfully

demonstrated[5, 32, 57, 58, 59, 60, 61]. However, they have limitations when it comes to spherical

deconvolution[62]. The number of fiber orientations is one of the other estimated voxels [63, 64].

It is clear from the literature review that stronger and more precise estimations are needed to

comprehend spatial correlations between DTI parameters and diffusion-weighted images in nearby

voxels. Researchers[65, 66] used basic convolution neural networks on patches of diffusion-weighted

images to estimate fiber orientation because deep learning models can learn complex patterns.
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They discovered that this method produced a more accurate estimation of diffusion kurtosis than

the q-space deep learning method, which is based only on dense layers. Other convolutional neural

network-based methods for fast DTI and fiber tractography with a restricted number of diffusion-

weighted images have been proposed, including DeepDTI[34] and SuperDTI[33]. Transformer-

DTI[5] uses a recently published multi-head self attention mechanism[67] to take advantage of the

spatial correlation between the diffusion signal and the diffusion tensor parameter in the nearby

slices and voxels. 25 million trainable parameters were used by Transformer-DTI[5] to meet its high

memory and processing requirements. For six diffusion directions, the original Transformer-DTI[5]

model is employed. We predict the output of the Transformer-DTI model for a reduced number of

diffusion directions Ndir = 5 in order to compare it with the proposed model.

Transformer model[5, 67] is highly promising, but because it may result in larger trainable

parameters, which require more memory and training time, it is not scalable for a larger number

of diffusion directions. As a result, it became challenging to train a single model to handle

numerous diffusion-directional signals. The exceptional ability of the Swin Transformer model[68]

to manage larger input sizes has attracted a lot of attention[5, 67]. Recent developments in deep

neural network architecture have shown that it performs well in a variety of computer vision tasks,

such as semantic segmentation, object detection, and image classification. By using a hierarchical

structure, the Swin-Transformer[68] divides input feature maps into non-overlapping patches and

processes them simultaneously using multiple transformer layers, enabling efficient parallelization

and lowering the computational cost of the self-attention mechanism. This is in contrast to

traditional transformer models, which process input data sequentially[5, 67]. As a consequence,

this method produces fewer parameters, which is essential for developing a more generalized

model that can manage multiple diffusion-directional signals. A Swin Transformer-based method

known as the SwinDTI framework has been proposed for the estimation of DTI measures.

A comparative study of various deep learning architectures for diffusion tensor imaging (DTI) is

presented. We specifically combine the architecture of DeepDTI[34], which uses a 3D convolutional

neural network (CNN) with input patch 64 × 64 × 64, and SuperDTI[33], which uses a 2D U-Net

with input patch 21 × 21. This combination of architectures is called 3D U-Net16 because it uses

3D U-Net of 16×16×16 patches. In order to lower the computational and memory costs of U-Net,

we selected a patch size of 16 × 16 × 16. A closer alignment with the proposed model objectives

for estimating quanting measures FA, AD, and MD is the justification for merging DeepDTI[34]

and SuperDTI[33] into a modified 3D U-Net[69] architecture. In contrast to the original 3D U-Net

[69], the problems under consideration for 3D U-Net16 are entirely different. Regression problem is

solved by the suggested method, whereas segmentation problem is solved by the original.

We also observe that, because SwinDTI has fewer trainable parameters than Transformer-DTI[5],

our suggested model uses windowing-based Swin Transformer[68], which results in a significantly

lower computation cost. In patch-based image processing tasks, Swin Transformer[68] has
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demonstrated promising results. Moreover, scalability with larger 3D-patches is possible with

patch-based processing using Swin Transformer[68], without a significant increase in memory and

computational costs. Consequently, to handle larger 3D patch sizes, our suggested model makes

use of the computational efficiency and scalability of windowing-based Swin Transformer[68].

2.3.1 Positive Aspects of Diffusion Tensor Imaging (DTI)

Visualization of Microstructural Changes without Invasive Procedures: DTI offers a

non-invasive way to see microstructural changes in tissues, especially the brain. This is crucial for

figuring out how the white matter tracts are organized and for spotting anomalies[70].

Quantitative Evaluation of Fiber Integrity: DTI makes it possible to evaluate white matter

fiber tract integrity quantitatively. This is important because pathology can be indicated by changes

in the connectivity of brain regions, as is the case with conditions like neurodegenerative diseases[71].

Mapping Connectivity in the Brain: By monitoring the direction and amount of water

diffusion, the method makes it easier to map the structural connectivity of the brain.

Understanding neural circuitry and functional networks is aided by diffusion tensor

imaging[58, 72].

Clinical Applications: DTI has been widely used in clinical settings for a variety of neurological

disorders, including Alzheimer’s disease, multiple sclerosis, and traumatic brain injury. It is also

used for the diagnosis and ongoing monitoring of these disorders. It offers useful data for prognosis

and treatment planning[33, 73].

Research Advancements: DTI has been essential to the progress of neuroscience studies.

Researchers have gained a deeper understanding of neural plasticity, brain connectivity, and the

anatomical foundations of cognitive processes[34, 74].

2.3.2 Negative Aspects of Diffusion Tensor Imaging (DTI)

Motion Artifact Sensitivity: DTI is very susceptible to motion artifacts, which may affect the

accuracy of the findings. Images can be distorted by patients, especially those who may find it

difficult to remain motionless during scanning[75].

Limited Spatial Resolution: Because the spatial resolution of DTI is intrinsically low, it can be

difficult to precisely see smaller structures. This restriction may affect the accuracy of monitoring

particular routes or identifying minute alterations in microstructure[76].

Water Diffusion Complexity: The actual complexity of water diffusion in biological tissues may

be oversimplified by the assumption that it follows a Gaussian distribution. Non-Gaussian diffusion

is a common feature of biological tissues, which can cause errors when interpreting DTI data[74].
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Incapacity to Differentiate Between Intra-axonal and Extra-axonal Diffusion: DTI gives

information about the general diffusion of water molecules, but it is unable to discern between the

two types of diffusion. This lack of precision may make it more difficult to interpret the cellular

microstructural alterations[77].

Difficulties in Crossing Fiber Regions: DTI encounters difficulties in precisely resolving the

intricate fiber architecture in areas known as crossing fiber regions, which are areas where multiple

fiber orientations intersect. The accuracy of tractography in these areas may be impacted by this

limitation[78].

2.4 Advanced Diffusion Imaging Techniques: HARDI, DSI,

DKI, and NODDI

The purpose of high-angular-resolution diffusion imaging (HARDI), a magnetic resonance imaging

(MRI) method, is to obtain comprehensive data regarding the diffusion of water molecules in

biological tissues, with a focus on the brain[79]. By collecting data at several gradient directions,

HARDI avoids the constraint of conventional diffusion tensor imaging (DTI), which is predicated

on a single Gaussian diffusion model. As a result, complex tissue microstructure can be

represented with greater accuracy.

Advantage of HARDI:

Higher Angular Resolution: HARDI offers a more accurate characterization of tissue orientation

and structure than DTI because it has a higher angular resolution than the latter.

Increased accuracy in the handling of cross-fibers: HARDI’s ability to capture multiple diffusion

directions makes it more accurate in handling regions where multiple fiber orientations intersect[80,

81].

Drawbacks of HARDI:

Increased Acquisition Time: The increased acquisition time associated with higher angular

resolution makes it less appropriate for certain clinical applications where scan time is a crucial

consideration.

Sensitivity to Motion Artifacts: Due to its longer acquisition time, HARDI is more susceptible to

motion artifacts, which could result in data quality degradation and image distortions[82].

Limitations of HARDI:

Difficult Data Analysis: In order to extract useful information from the acquired datasets, HARDI

data analysis can be computationally demanding and require the use of sophisticated algorithms.

Restricted Usability in Clinical Settings: Extended acquisition durations and increased complexity

could potentially hinder the extensive integration of HARDI in standard clinical environments[83].
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A q-space imaging method called Diffusion Spectrum Imaging (DSI) uses a 3D Fourier transform of

signal attenuations to measure the diffusion propagator directly[78]. This method makes it possible

to estimate the diffusion orientation distribution function (ODF), which offers spatial data regarding

diffusion in three-dimensional space along particular directions.

Advantages of DSI:

Accurate Representation of Complex Tissue Microstructure: DSI provides a more accurate

depiction of the tissue microstructure by capturing detailed angular information without the need

for simplified models.

Strong Management of Crossing Fibers: DSI can handle crossing fibers, much like HARDI, making

it suitable for areas with intricate fiber layouts[84].

Disadvantages of DSI:

High Data Requirements: The application of DSI in clinical research may be limited due to its

typical requirement for a large number of signal measurements, which can result in longer acquisition

times.

Resource-Intensive Data Processing: DSI data analysis and processing can be computationally

challenging and require sophisticated algorithms and significant computer resources[85].

Limitations of DSI: Limited Clinical Adoption: DSI’s practicality in clinical settings is hindered

by its need for a large number of signal measurements, which are often critical in short scan times.

Standardization challenges: It can be difficult to standardize DSI protocols across various imaging

systems and sites, which may limit the protocol’s applicability in multicenter settings[86, 87].

In summary, diffusion imaging techniques have advanced with HARDI and DSI, offering

significant insight into tissue microstructure. They are not as applicable in routine settings or

clinical research, though, because they have trade-offs with respect to acquisition time, data

complexity, and computational demands.

Diffusion Kurtosis Imaging (DKI): DKI is a precise magnetic resonance imaging (MRI)

method used in neuroimaging to evaluate the microstructural complexity of various tissues,

including brain tissues[88, 89]. Traditional diffusion MRI measures the diffusion of water

molecules; DKI measures the diffusion of water molecules as well as their non-Gaussian

distribution, which can reveal information about the microstructure of the tissue. In the context

of DKI, kurtosis denotes the statistical measure of the shape of a probability distribution. It

measures the amount that water diffusion in DKI deviates from a Gaussian distribution,

suggesting the existence of intricate tissue architectures like cell membranes, myelin sheaths, and

microcapillaries. Researchers[88, 89] can obtain more information on tissue microarchitecture

using DKI to analyze diffusion data and derive parameters such as mean kurtosis (MK) and

kurtosis anisotropy (KA), which are not available via conventional diffusion magnetic resonance
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imaging. DKI can help with the diagnosis, prognosis and treatment planning of a variety of

neurological disorders, such as stroke, traumatic brain injury, and neurodegenerative diseases[90].

Advantages of DKI:

Enhanced Sensitivity: DKI offers more information than diffusion tensor imaging (DTI), especially

in areas with complex microstructural features such as tissue heterogeneity or crossing fibers[74].

Characterization of Non-Gaussian Diffusion: DKI provides information on tissue microstructure and

pathology by simulating the non-Gaussian distribution of water diffusion in biological tissues[90].

Measurement of Tissue Microstructural Changes: DKI metrics, like fractional anisotropy (FA) and

mean kurtosis (MK), can be sensitive indicators of microstructural changes linked to a range of

neurological conditions, such as tumors, neurodegenerative diseases, and white matter injury[91].

Drawbacks of DKI:

Complexity of Interpretation: It can be difficult for non-experts to interpret DKI metrics because

they require a sophisticated understand of diffusion physics and the biological basis of kurtosis[92,

92].

Sensitivity to Image Acquisition Parameters: DKI metrics are susceptible to variations in acquisition

parameters, like b-values, which may cause disparities and complicate the process of contrasting

the outcomes of various investigations[92].

Greater Data Requirements and Acquisition Times: Compared to DTI, DKI typically has higher

data requirements and acquisition times. This can limit its clinical viability, especially in

applications that are time sensitive or in populations that are more vulnerable[92].

Limitations of DKI:

Tissue Heterogeneity: In highly heterogeneous tissues, DKI may have difficulties precisely

characterizing diffusion properties due to kurtosis model assumptions.

Limited Clinical Validation: Although DKI appears to have promise as a research tool, more studies

are required to fully comprehend its clinical utility and ensure that it is widely used. To achieve

this, a variety of patient populations and pathologies will need to validate the technology[93, 94].

Processing Challenges: DKI data analysis requires the application of complex postprocessing

methods, which may lead to mistakes or inconsistencies if not performed correctly or

standardized[92, 94].

Neurite Orientation Dispersion and Density Imaging (NODDI): Diffusion MRI (dMRI)

uses a neuroimaging technique called Neurite Orientation Dispersion and Density Imaging (NODDI)

to characterize the microstructural features of brain neural tissue. Unlike traditional diffusion

tensor imaging (DTI), NODDI aims to provide more accurate information regarding the underlying

neuronal architecture[80, 95].
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The NODDI model sources the diffusion signal in each voxel from three compartments: isotropic

diffusion (representing the cerebrospinal fluid CSF); intracellular diffusion (representing the

diffusion of water molecules within neurites, such as axons and dendrites); and extracellular

diffusion (representing the diffusion of water in the extracellular space)[80].

By estimating neurite density and orientation dispersion parameters, NODDI can provide insights

into the composition and intricacy of neural tissue. The total density of neurites within a voxel is

indicated by the neurite density index (NDI), while the orientation dispersion index (ODI)

characterizes the degree of coherence or dispersion in the orientations of the neurites within the

voxel[80, 95].

Advantages of NODDI:

Microstructural Specificity: By measuring neurite density and orientation dispersion independently,

NODDI offers novel insights into tissue microstructure that are more closely linked to the underlying

neuroanatomy than traditional diffusion metrics[96].

Sensitivity to Pathological Changes: NODDI metrics have shown sensitivity to a number of

neuropathologies, such as brain tumors, white matter disorders, and neurodegenerative diseases,

allowing for the early identification and tracking of the disease’s progression[97].

Possibility for Clinical Translation: Because NODDI can detect microstructural changes linked to

neurological conditions, it may be able to provide biomarkers for the diagnosis, prognosis, and

evaluation of response to treatment[97, 98].

Consequences of the NODDI:

Dependency on Model Assumptions: Because the NODDI is predicated on certain assumptions

about the microstructure of tissue, such as the existence of distinct compartments that represent

neurites and extracellular space, it may not adequately capture the complexity of biological

tissue[99].

Challenges in Parameter Approximation Accurate NODDI parameter estimation requires robust

modeling and fitting algorithms, which may be sensitive to noise, artifacts, and image quality[100].

Limited Spatial Resolution: NODDI may have problems resolving microstructural features at the

sub-voxel level in regions with complex fiber configurations or low signal-to-noise ratios[101].

Limitations of NODDI:

Validation Across Populations: Although NODDI has shown promise in research settings, more

validation is required to ensure the reliability and reproducibility of its clinical utility in a variety

of patient populations and imaging protocols[97, 100].

Interpretation Complexity: Because interpreting NODDI metrics requires an understanding of the

underlying biological processes and potential confounding factors, clinicians and researchers may

find it challenging to do so without specialized training[97].
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It is still challenging to integrate NODDI with other imaging modalities, such as structural or

functional magnetic resonance imaging, which restricts its ability to provide comprehensive

information on the connections between brain structure and function. NODDI provides valuable

microstructural information despite its limitations.
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Chapter 3

DTI parameters estimation using

Sparse dMRI Data

3.1 Theory

3.1.1 Diffusion Tensor Imaging

Diffusion weighted images (DWIs) are a type of magnetic resonance imaging (MRI) that

quantifies the brain’s water molecule diffusion. With the use of the Diffusion Tensor Imaging

(DTI) technique[50], it can be used to evaluate the damage caused by neurological

diseases[102, 103] as well as the structural integrity of white matter[104] tracts. Since DTI offers

quantitative measurements of the brain’s structural construct, it is especially helpful in the

investigation of brain development[105]. Additionally, it aids in assessing how lifestyle and

environmental factors, like eating habits, physical activity, and drug use, affect the brain[65, 73].

DTI is also utilized in the study of the heart, muscles, nerve fiber development, and the digestive

tube[106]. While the majority of MRI techniques produce univariate scalar images[107], DTI

yields multivariate tensor-valued images that are useful for detailed image visualization[5, 55].

Under Gaussian assumption[50], the diffusion tensor, a 3x3 matrix as stated in equation3.11,

represents the diffusion rates in each combination of directions.

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (3.1)

Multiple sclerosis, Alzheimer’s disease, traumatic brain injury, stroke, and other neurological

conditions can all be diagnosed and tracked with the help of DTI, which offers precise images of
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the white matter structure of the brain. Moreover, the efficacy of various therapies and

treatments for these conditions can be assessed using DTI[108]. DTI measures three key

parameters that are indicative of the structural integrity and function of the brain: mean

diffusivity (MD), axial diffusivity (AD), and fractional anisotropy (FA)[109]. Comprehending

these values can be beneficial for both neurological disorder diagnosis and treatment[110].

Voxel diffusion[4, 50, 111] is measured at each image along a set of distinctly gradient directions

u1, u2,... un., and the corresponding diffusion signal s = [s1, s2, ... sn ]
T
. Equation 3.2, with

simplified assumptions, represents the diffusion tensor model for voxels containing a diffusion

pattern[50, 112, 113]. Here, the diffusion signal with b = 0 is represented by s0.

si = s0 e−buT
i Dui (3.2)

The symmetric matrix D describes the diffusion rates in all directions. The eigenvalues λ1, λ2, and

λ3 represent the three positive principal effective diffusivities, and the eigenvectors E1, E2, and E3
represent the three orthogonal principal coordinate directions.

DEi = λiEi, i = {1, 2, 3} (3.3)

These equations are based on[50, 111]. DE = EΛ where E=( E1 |E2 | E3) and Λ = diag(λ1, λ2, λ3).

The eigenvalues are contained in the diagonal matrix Λ, and the orthonormal eigenvectors are

contained in the columns of the matrix E.

We discuss the quantitative measures—Fractional Anisotropy (FA), Axial Diffusivity (AD), and

Mean Diffusivity (MD)—that are particularly important in this field within the framework that has

been suggested.

The directionality or degree of anisotropy of water diffusion in biological tissues, especially white

matter, is measured by fractional anisotropy.

FA =

√
3

2

√
(λ1 − λ̂)

2
+ (λ2 − λ̂)

2
+ (λ3 − λ̂)

2√
λ1

2 + λ2
2 + λ3

2
(3.4)

where,

λ̂ = MD =
(λ1 + λ2 + λ3)

3
(3.5)

According to equations 3.11 and 3.5, λ̂ denotes the average of the eigenvalues λ1, λ2, and λ3 derived

from the diffusion tensor D. The average apparent diffusion along each of the three diffusion axes

is represented by the mean diffusivity, or MD. The amount of apparent diffusion along the primary

diffusion axis is known as apparent diffusivity (AD). AD = λ1.

For HCP dataset, the operation of the deep transformer neural network can be seen in Figure 3.1,

which generates a nonlinear mapping between 5×5×5 DWI patch inputs and quantitative measures
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of FA, AD, and MD (output) in the proposed approach. One way to represent the suggested neural

network is as [FApredict, ADpredict,MDpredict] = F (X;w) , where traditional tensor fitting is not

necessary because nonlinear function F , which maps input X and trainable parameters w to output

quantitative measures, is learned and optimized through training a deep neural network[4]. We want

to extract the diffusion tensor D from the signal for the NIFD and ADNI datasets, thus rewrite

equation3.2.

si = s0e
(−bxxDxx−byyDyy−bzzDzz−2bxyDxy−2bxzDxz−2byzDyz) (3.6)

The function of diffusion directions g = {gi}Ni=1 is represented here by bjk, for j, k ∈ {x, y, z},

where each gi = [gix, giy, giz] is a unit direction vector. In addition, the zero diffusion signal is

represented by s0. The best estimate of the diffusion coefficient D is provided by the equation

si/s0 = e−bgT
i Dgi , which is obtained by simplifying the b-matrix as described in [112]. For every gi,

the apparent diffusion coefficient Ki can be computed as follows: Ki = gTi Dgi = (−1/b) ln(si/s0).

The linear mapping between the diffusion tensor D and the apparent diffusion coefficient estimates

K = [K1, ...,KN ]T using K = αD̄, where D̄ = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz], is represented

by the design matrix α = [α1, ..., αN ]T .2gixgiy, 2gixgiz, 2giygiz, and αi = [g2ix, g
2
iy, g

2
iz] T . D̄ =

(αTα)−1αTK is used in the conventional linear least squares fitting (LLS) method [4], but it is

sensitive to noise and sparse measurements.

We suggest solving for D directly using Equation 3.6 as an inverse map D̄ = F (X,g), where the

input X = [s1/s0, ..., sN/s0] per voxel, in place of using the linear model for sparse measurements.

Using a neural network based on Swin-transformers, we have formulated F [68]. We present a

more general modeling framework in which a single model (e.g., 41, 21, 5) can effectively learn from

diffusion signals with varying numbers of diffusion directions.

Multiple attention heads are frequently used in real-world applications to learn various input

representations. With just six diffusion-weighted images, the Transformer-DTI [5] model used

multi-head self-attention to estimate diffusion tensor imaging parameters.

3.1.2 Investigating the Feasibility of DTI Parameters Estimation over

HCP

The Human Connectome Project (HCP) dataset is a cornerstone of neuroimaging research because

of its large collection of high-quality data[114]. This literature review aims to examine current

research investigating the feasibility of estimating DTI parameters using the HCP dataset, with a

focus on methods, challenges, and advancements in the area[115, 116].

Methods of Estimation for DTI Parameters: Mean diffusivity (MD), fractional anisotropy (FA),

axial and radial diffusivity, and other DTI measurements can be used to describe the organization
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and integrity of white matter[117, 118]. In recent investigations, sophisticated algorithms have

been applied for DTI processing, including as enhanced tensor fitting methods, diffusion

model-based approaches, and machine learning techniques[5, 34, 119]. These methods aim to

extract comprehensive information from diffusion-weighted MRI data in order to properly

estimate microstructural features.

With the help of the HCP dataset, which includes diffusion and structural MRI images from a large

cohort of healthy individuals, studying brain connectivity and organization has never been easier.

Utilizing the enormous HCP dataset, studies on individual variability in white matter architecture,

brain network topology, and the influence of genetic factors on diffusion metrics have been conducted

recently. Considerable progress in neuroscience and neuroimaging has been made possible by the

richness and diversity of the dataset.

HCP Dataset-Based Feasibility Studies for Estimating DTI Parameters: Utilizing cutting-edge

image processing pipelines and computational techniques, recent research has shown that predicting

DTI parameters over the HCP dataset is feasible. In order to assure the precision and dependability

of DTI parameter estimation, these investigations have tackled issues such motion artifacts, eddy

current distortions, and image registration .problems. In addition, initiatives have been taken to

improve the reproducibility of results by standardizing analysis pipelines and establishing quality

control protocols.

Limitations and Challenges: Although there has been a lot of advancement, there are still a

number of difficulties with DTI parameter estimation using the HCP dataset. Data harmonization

and analysis are restricted by subject-specific characteristics, variations in scanner technology, and

variability in acquisition techniques. Furthermore, it is still difficult to understand complicated

diffusion measures in the context of underlying biological processes, which calls for

interdisciplinary cooperation and methodological developments.

The Human Connectome Project (HCP) gathered a significant amount of behavioral,

demographic, and brain imaging data that is available to the public in the form of the HCP

Young Adult dataset. Data from 1200 healthy young adults, aged 22 to 35, are included in the

Young Adult dataset. Diffusion-weighted magnetic resonance imaging (DW-MRI) data obtained

using a multi-shell acquisition protocol and having multiple b-values are included in the HCP

Young Adult dataset. The b-value is directly related to how strong the diffusion-sensitizing

gradients were used in the MRI scan. The random movement of water molecules in tissue, or

diffusion, is measured using diffusion-sensitizing gradients. The dataset comprises three distinct

b-values for DW-MRI data acquisition: 1000s/mm2, 2000s/mm2, and 3000s/mm2. In the course

of data processing and analysis, several images not diffusion weighted (b = 0) from the acquisition

protocol are also included. These images serve as a reference for diffusion-weighted images. We

only take into account DW-MRI scans with b = 1000 for the estimation of DTI. There are 90

diffusion encoding directional signals available for b = 1000 image volumes. These signals are
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uniformly distributed on a unit sphere.

In conclusion, new research has shown that it is feasible to estimate DTI parameters over the

HCP dataset, opening up currently uncommon possibilities for understanding brain connection and

microstructure. In spite of obstacles, the discipline is moving forward thanks to collaborative efforts

and continuous methodological improvements, which open up new avenues for understanding the

complex structure of the human brain. In the ongoing effort to solve the mysteries of the brain, the

HCP dataset continues to be a vital resource for neuroimaging research.

3.1.3 Investigating the Feasibility of DTI Parameters Estimation over

MICCAI Quad22

The purpose of this research was to evaluate the validity of Deep Learning-based reconstructed

dMRI images for migraine pathology in a real clinical setting. The primary disabling disorder

known as migraine is common and more common in young and middle-aged women. It is

characterized by recurrent episodes of headache. Currently, there are no biomarkers for migraine,

and the pathophysiological mechanisms are poorly understood despite the high prevalence of the

disease. The International Headache Society’s Headache Classification Committee[120] has

classified migraine patients into two groups: episodic migraine (EM) and chronic migraine (CM).

The two groups are distinguished by the number of days of headache each month (15 or more days

for patients with chronic migraine).

Migraine is useful because the results of dMRI are not as dramatic as those of healthy controls (HC).

On the contrary, with disorders such as schizophrenia or Alzheimer’s disease, where it is relatively

easy to find statistically significant results with traditional methods based on DTI, T1, and T2-

weighted magnetic resonance imaging, it becomes difficult to appreciate techniques or parameters

that can better define pathophysiological properties.

There have been several dMRI studies evaluating migraine, and the most popular method for

assessing microstructural properties is DTI. Studies comparing migraine patients with healthy

controls[121, 122, 123] and between EM and CM patients[123, 124] have reported differences in

DTI-related scalars such as fractional anisotropy (FA), mean diffusion (MD), and axial diffusivity

(AD). When evaluating microstructural properties, DTI has been the most often used method.

Variations have been observed between EM and CM patients, as well as between migraine

patients and controls. The finding reported most frequently in these investigations is that MP had

reduced FA compared to controls. Many studies have reported higher and lower AD values in MP

compared to controls. Like AD, there have been trends in both MD and radial diffusivity with

higher and lower values in MP compared to controls; however, more studies have reported higher

values in MP. Somewhere else[125] is a more thorough explanation of these findings and additional

comparisons with a larger number of references.
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The individuals involved in this study were taken from a prior clinical trial on migraine[126]. A

data set was constructed with patients with EM and CM and healthy controls (HC).

Snowball and convenience sampling were used to find HC. Exclusion criteria applied to controls who

had a history of migraine, other headache conditions other than infrequent tension-type headaches

(less than one attack per month), or a history of other neurological or psychiatric conditions. HC’s

age ranged from 18 to 65. Furthermore, controls received a questionnaire to determine whether

they experienced headaches similar to migraines. Migraine patient(MP) was examined for the first

time by a neurologist specialized in headache disorders. Patients with migraine had been referred

to the Hospital Cĺınico Universitario de Valladolid (Valladolid, Spain) Headache Unit.

The assessment of the microstructural characteristics of the brain and other organs is made possible

by diffusion magnetic resonance imaging (dMRI), a non-invasive imaging method that provides

information about the diffusion of water molecules in biological tissues[127, 128]. At different

stages of the dMRI data pipeline, the application of deep learning techniques in this modality

has demonstrated great potential and is a rapidly expanding field. Among these methods are

automatic detection and elimination of artifacts[129, 130], phase error correction in multi-shot

dMRI acquisitions[131], and noise filtering[34, 132]. Data harmonization from various sources has

also made extensive use of artificial intelligence (AI) techniques. This is especially crucial when it

comes to MRIs, since the data obtained from various vendors’ scanners or with varying parameters

can differ greatly. Harmonizing such databases is essential to allow multisite studies. In order

to improve the statistical power of the analysis and generalize results across different sites, DL

techniques have demonstrated the ability to integrate data from multiple sources[133, 134, 135, 136].

It is anticipated that the use of DL in the harmonization process will have a major impact as it can

standardize data collected under different circumstances.

Our goal is to find out if DTI parameters generated from volumes acquired with a reduced number

of data and processed by deep learning techniques can match the statistical results obtained from

standard quality acquisitions, considering the potential benefits of using DL on incomplete data in

dMRI. Our goal is to confirm in actual clinical trials the value of deep learning-based reconstruction

methods.

To be clear, the study has concentrated on one important dMRI component, namely the angular

resolution. In dMRI, this parameter is a critical design component that is proportional to the inverse

of diffusion sensitizing gradient directions[137, 138]. Several dozens or even hundreds of gradient

directions are needed to fit the basis in High Angular Resolution Diffusion Imaging (HARDI)

techniques, while DTI methods only require a minimum of six gradient directions[139, 140, 141].

To reduce examination time and guarantee patient comfort, the number of gradient directions must

be optimized in clinical settings. Conversely, decreasing the number of gradient directions might

cause[142] to eliminate small variations in the angular properties of dMRI data, which could result

in inaccurate quantitative measures from a fitted model. Clinical research may therefore yield
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varying outcomes with varying numbers of gradient directions.

To enhance the number of gradient directions, or to increase angular sampling, one can either

decompose the dMRI signal into orthogonal basis and reconstruct the angular information under

a different gradient configuration[143, 144, 145] or average the local angular neighborhood using

the representation of the spherical radial basis functions[146]. Although other AI-based approaches

have been applied in[147, 148, 149], the efficacy of these methods was assessed by applying numerical

metrics such as the RMSE, PSNR, or SSIM indexes. Recent research, however, has demonstrated

that fewer gradients may lead to a loss of clinically meaningful data and complicate the identification

of variations in a range of medical conditions[150, 151]. It has been established that the number

of diffusion gradient orientations plays a significant role in determining the diffusion and DTI

descriptor values as well as the outcomes of their statistical comparisons between clinical groups.

Patients with episodic migraine (EM) and chronic migraine (CM), in particular, comprised the

evaluated clinical groups in this investigation. The following criteria led to the selection of this

disorder:

With an appropriate acquisition scheme that permits downsampling the number of gradient

directions without sacrificing the coverage of the q-space, a unique and comprehensive database of

migraine patients (MP) was accessible. The brain regions with statistically significant differences

have been identified by previous studies using the same database using fully sampled data, which

makes them the perfect benchmark for reduced acquisitions.

Patients with episodic migraine (EM) and chronic migraine (CM), in particular, comprised the

evaluated clinical groups in this investigation. With an appropriate acquisition scheme that permits

downsampling the number of gradient directions without sacrificing the coverage of the q-space, a

unique and comprehensive database of migraine patients (MP) was accessible.

We used 160 dMRI volumes, all of which included a special q-space coverage scheme that allows us to

subsample the data with ease by just choosing 21 of the 61 gradient directions that are appropriate,

eliminating the need to use interpolation algorithms. Using the available reduced dMRI dataset,

we aimed to replicate a realistic scenario in a clinical setting. We found that when only 21 gradient

directions were used, 60% of the statistically significant differences between EM and CM patients

that had been found in a white matter study using 61 gradient directions were no longer present as

mentioned in Fig 3.2.

3.1.4 Investigating the Feasibility of DTI Parameters Estimation over

NIFD

Frontotemporal dementia (FTD) is a serious neurodegenerative disease that mainly affects the

frontal and temporal lobes of the brain, resulting in behavioral abnormalities and cognitive decline.

To begin the intervention and for patients to receive proper care, an early and accurate diagnosis
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of FTD is essential. About 12–22 people out of every 100,000 people, according to the experts,

suffer from FTD. This indicates that 1.2 million to 1.8 million individuals globally are affected. To

help with the early diagnosis of frontotemporal dementia, this research study proposes a novel deep

learning framework that makes use of sparse diffusion measures taken from neuroimaging data.

The proposed framework successfully distinguishes between people who are healthy and those who

have FTD by utilizing deep learning techniques to automatically extract pertinent features from

the data. The results of the experiment show how promising the suggested method is for enhancing

FTD diagnosis and opening up opportunities for future research in this field.

The neurodegenerative condition known as frontotemporal dementia (FTD) affects millions of

individuals worldwide [152, 153]. Time-consuming diffusion weighted imaging (DWI) used for the

current clinical diagnosis requires at least 40 diffusion directions and can result in scanning times

longer than three hours [154, 155]. For management and treatment to be effective, an accurate

and timely diagnosis is essential [156, 157]. A potent neuroimaging method called diffusion tensor

imaging (DTI) offers important insights into the white matter of the brain, which is frequently

damaged in patients with frontotemporal dementia (FTD) [108, 158, 159]. This presents problems

for patients and diagnostic laboratories because conventional linear methods for DTI processing

call for multiple diffusion directions.In terms of speeding up DTI processing and improving

quantitative measures for FTD diagnosis, recent developments in deep learning

[1, 54, 160, 161, 162, 163] appear promising. By focusing on pertinent brain regions,

attention-based deep learning techniques such as Transformer-DTI [5] allow efficient processing

with fewer diffusion directions. However, because of the larger trainable parameters, longer

training times, and higher memory requirements, scalability becomes an issue with more diffusion

directions.

We suggest a novel attention-based deep learning model called Swin-Transformer to tackle this.

Input feature maps are processed efficiently by the hierarchical structure of the Swin Transformer

by being divided into non-overlapping patches, which lowers the number of parameters and

computational expenses. Using our proposed model on the frontotemporal lobar degeneration

neuroimaging initiative (NIFD) dataset, we aim to accurately diagnose early FTD incidence by

extracting quantitative measures such as Fractional Anisotropy (FA), Axial Diffusivity (AD), and

Mean Diffusivity (MD). We evaluate its performance for various diffusion directions against both

Transformer-DTI and conventional linear methods.

3.1.5 Investigating the Feasibility of DTI Parameters Estimation over

ADNI

With an estimated 6.2 million cases in the US, Alzheimer’s disease is one of the most prevalent

neuro-degenerative diseases. In order to improve the early diagnosis of Alzheimer disease (AD) using
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sparse data, this research study explores the potential of Transformer-based deep learning techniques

to speed up the processing of diffusion tensor imaging (DTI) measures. Diffusion Weighted Imaging

(DWI) is a laborious procedure that requires more than three hours of scanning time per patient.

Each diffusion direction takes two to five minutes to complete, and a minimum of forty diffusion

directions are required for the standard clinical diagnosis. Our proposed model, which reduces the

scanning time by more than half, makes use of the attention mechanism to generate quantitative

measures of mean diffusivity (MD), axial diffusivity (AxD), and fractional anisotropy (FA) using 5

and 21 diffusion directions. We show that our proposed model, which uses sparse diffusion directions

to achieve accurate quantitative measurement of FA, AxD, and MD scores for early diagnosis of

AD patients from healthy controls, outperforms the conventional linear least square method on the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

Alzheimer disease (AD) is a neurodegenerative disease that affects millions of people worldwide

[152, 153]. DWI is used in the routine clinical diagnosis of AD. It is a laborious procedure that

requires at least 40 diffusion directions and takes two to five minutes for each direction. As a

result, the scanning time for every patient is longer than three hours [155]. Early and accurate

diagnosis is critical to effective treatment and management of AD [156, 157]. The brain’s white

matter microstructural integrity is often compromised in Mild Cognitive Impairment (MCI), an

early stage of Alzheimer’s disease (AD) [108, 158, 159]. Diffusion tensor imaging (DTI) is a powerful

neuroimaging technique that can offer useful information on this topic. However, the patient and

the diagnostic laboratory face difficulties because the conventional linear least squares method for

DTI processing requires many diffusion directions.

Current developments in deep learning have demonstrated great promise for speeding up the

processing of DTI measures and enhancing the quantitative measures of AD and MCI diagnosis

[1, 54, 160, 162]. Attention-based [5] deep learning is an effective method that extracts

quantitative measures from diffusion tensor imaging, namely fractional anisotropy (FA), axial

diffusivity (AxD) and mean diffusivity (MD), by focusing on pertinent brain regions of interest.

Even with six diffusion directions, it is possible to process DTI measures more accurately and

efficiently by using the attention mechanism [5]. Transformer-DTI [5] makes use of the multihead

self-attention mechanism, which was first presented in the work by Vaswani et al. on attention

[67], to take advantage of the spatial correlation found in diffusion tensor parameters and the

diffusion signals between adjacent slices and voxels. Although transformer models have great

potential, issues with scalability arise when handling more diffusion directions. This is mainly

because there are more trainable parameters, which means that training takes longer and requires

more memory. As a result, it becomes difficult to train a single model that can handle multiple

diffusion directional signals. In contrast to conventional transformer models, the Swin transformer

model has attracted a great deal of attention due to its remarkable capacity to handle larger input

sizes [68]. With its recent introduction, this deep neural network architecture has shown
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remarkable performance in a range of computer vision tasks, including semantic segmentation,

object detection, and image classification. The Swin Transformer utilises a hierarchical structure

in contrast to traditional transformer models, which process input data sequentially [67].

The input feature maps are split into non-overlapping patches in the Swin Transformer, and several

transformer layers are used to process these patches concurrently. This method lowers the self-

attention mechanism’s computational cost and permits effective parallelization. As a result, fewer

parameters are needed, which is essential for creating a more comprehensive model that can handle

several diffusion-directional signals. To precisely diagnose early incidence of AD in this context,

we present a novel attention-based deep learning model called Swin-Transformer that is based on

deep learning and can extract quantitative measures like FA, AxD, and MD.We utilize the publicly

available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to assess the efficacy of our

suggested model. For 41 diffusion directions, we compare the performance of our model with

that of a conventional linear least squares method [4]. Additionally, we compare our model with

Transformer-DTI [5] and the conventional linear least square method [4] for 21 and 5 diffusion

directions, respectively. Our goal in making these comparisons is to show how much better our

suggested model is at correctly identifying AD in its early stages.

3.2 Methods

3.2.1 Data Preprocessing and Model Training over HCP

Robust estimation of DTI parameters depends extensively on compactly capturing correlation

information between neighboring voxels. Conventional techniques such as LLS fitting estimates

only depend on a single voxel. To capture correlations between nearby voxels, the following layers

have previously been used in deep neural based approaches[5, 33, 34, 164, 165].

A. Convolution Layer: To discover local correlation structures within a layer, convolutional

neural networks (CNNs) are frequently employed[164]. This is done by using the input image’s

small neighborhoods, or kernel sizes, which are convolved with a weight matrix that has been

learned to generate the feature maps that are output. With height h, width w, and din input

channels, let x ∈ Rh×w×din be the input image. A region with shape k × k × din is obtained by

extracting a local neighborhood Nk with spatial extent k for each pixel xij .By spatially summing

the product of depthwise matrix multiplications of the input values with a learned weight matrix

W ∈ Rk×k×dout×din , the output yij ∈ Rdout for position ij is obtained; The following can be used

to represent the output yij :

yij =
∑

a,b∈Nk(i,j)

Wi−a,j−bxa,b (3.7)

where Nk(i, j) = (a, b) | |a− i| ≤ k/2, |b− j| ≤ k/2 is the set of indices within the neighborhood of
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Figure 3.1: The proposed framework over HCP dataset consists of two steps: step 1 describes how data
are generated, and step 2 concentrates on neural network training and prediction.

pixel xij . A convolutional layer was used by 3D U-Net16[33, 34, 69]. Although the Convolution

Layer uses parameters efficiently, it has trouble capturing non-local features and its parameter size

increases quickly as the number of filters and filter size increase.

B. Self-attention : The local region of the pixels is extracted at positions a, b ∈ Nk(i, j) with

spatial extent k centered around xij , just as convolution does with a pixel xij ∈ Rdin . In contrast

to earlier studies on attention in vision, which carried out global attention between every pixel,

this type of local attention is distinct. Global attention is computationally costly, which makes

it difficult to use it for all layers in a fully attention model. To compute the output of pixels

yij ∈ Rdout , the single head attention[164] is used as follows:

yij =
∑

a,b∈Nk(i,j)

softmaxab(q
⊤
ijkab)vab (3.8)

where the neighborhood pixels and the pixel in position ij are linearly transformed by the queries

qij = WQxij , the keys kab = WKxab, and the values vab = WV xab. A softmax applied to all logits

computed in the surrounding area of ij is indicated by the notation softmaxab. The learned

transforms are WQ, WK , and WV ∈ Rdout×din .

Although self-attention considers global features by applying data from all pixels at once, it has

the drawback of having more parameters because it is global. However, this limitation can be

mitigated by carefully using self-attention or downsampling data to reduce computational

complexity. Stronger than convolution, self-attention ensures global relationships and long-range
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dependencies within the input data. It allows for flexibility in modeling complex interactions

while maintaining computational efficiency and performance, but careful management of the

parameter requirements is necessary.

C. Multi-head self attention: The input data is represented along the depth of the data as

a diffusion signal. In the context of local self-attention[164], spatial information is aggregated

over neighborhoods convolutions through the use of a convex combination of value vectors with

mixing weights (softmaxab(·)) that are influenced by content interactions. For each pixel ij, this

computation is performed again. To learn multiple distinct representations of the input, multiple

attention heads are used in practice. The method involves splitting the pixel features xij depthwise

into N groups xn
ij ∈ Rdin/N . Then, for each group, separate single-headed attention is computed

using distinct transforms Wn
Q, Wn

K , and Wn
V ∈ Rdout/N×din/N per head. Finally, the output

representations are concatenated to produce the final output yij ∈ Rdout .

xij = [x1
ij , x

2
ij , ..., x

w
ij ]; y

n
ij =

∑
a,b∈Nk(i,j)

softmaxab(q
n
ij

⊤knab)v
n
ab (3.9)

softmaxab is the result of applying a softmax function to the logits computed in the neighborhood

of ij in order to capture the relationship between the pixels in the neighborhood. This softmax

operation gives a probabilistic interpretation of each pixel’s importance in the neighborhood and

guarantees that the attention weights sum to 1. Multi-head self-attention was used by Transformer-

DTI[5].

D. Spatial relative attention: Spatial relative attention calculates the spatial relation between

a target pixel pij = [i, j] and a pixel pab = [a, b] within its position scope as follows[164, 165]:

ynij =
∑

a,b∈Nk(i,j)

softmaxab(q
n
ij

⊤knab + fn
θg (pab − pij))v

n
ab;

yij = [y1ij , y
2
ij , ..., y

n
ij ](3.10)

where, depending on a geometric prior, fθg (pab − pij) defines the composability of a pixel pair

(pij , pab). Our method is based on patches; the input image is divided into patches, and each

patch is given a different amount of spatial relative attention. This enables us to model long-range

spatial relations in large images and lower the computational cost of spatial relative attention.

E. Window Self attention:

The concept of window self-attention, which is derived from the Swin-Transformer[68], is integrated

into our proposed SwinDTI model. In order to reduce the number of parameters and simultaneously

increase non-linearity, we apply specific modifications. Using a predetermined stride, our model

systematically moves adjacent windows, building upon the Swin Transformer[68] architecture. The
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purposeful modification results in areas where windows overlap with each other. By allowing tokens

to form connections despite belonging to separate windows, this strategic overlap aims to promote

inter-token attention. A wider range of possibilities for mutual influence is introduced by the

dynamic interplay between the tokens, which encourages the development of more detailed and

complex representations. Key to our model is the window self-attention mechanism in SwinDTI,

which provides several advantages over conventional self-attention mechanisms[68].

Window Size and Direction Vector: We use 5 × 5 × 5 as the fixed patch size in SwinDTI.

Rather than applying the learned weights to the diffusion direction, we concatenate the direction

vector into the input signal. This improves the model’s non-linearity and enables it to represent

more intricate relationships between the input data. See subsection 2.2 for more information.

Shared Triplets: Self-attention traditionally applies distinct triplets of (query, key, value) to each

position in the input [5, 67]. On the other hand, we use window self-attention in SwinDTI, where

all windows in a patch receive the same triplets. By doing this, the needed number of parameters

is greatly decreased without compromising the non-linearity of the model.

Compact Parameter Space: SwinDTI achieves a more compact parameter space than

conventional self-attention mechanisms because it makes use of shared triplets. Because of its

compactness, the model can learn more complicated functions while still operating effectively and

efficiently.

Shifting Mechanism: In order to overcome the restriction of only learning local features shared

by all windows, SwinDTI integrates a shifting mechanism into the architecture of the Swin

Transformer. By applying various shift sizes across several Swin Transformer blocks, this

mechanism produces shifted windows that are different from the original windows. Because there

are several layers in the Swin-transformer block with varying shift sizes, SwinDTI is able to

efficiently capture both global and local features. Through this mechanism, a thorough correlation

of the diffusion signals between and within patches is captured. Enhancing predictive

performance, SwinDTI strikes a balance between capturing local and global features by merging

the window self-attention mechanism and the shifting mechanism. Moreover, SwinDTI is a more

effective and efficient model for DTI prediction tasks due to its increased non-linearity and fewer

parameters.

The three stages of the proposed model are as follows: producing training data is the first step,

training a neural network is the second, and predicting quantitative measures of FA, AD, and MD

is the last stage. Algorithm 1 describes the Dataset in detail, as does the Model Training procedure.

Data Preprocessing and Model Training: We have applied Qball-based interpolation to

generate sub-datasets of the original dataset that have fewer diffusion directions [146, 166]. Ndir

represents the number of diffusion directions. We specifically interpolated to

Ndir = {64, 32, 21, 5}, where the unit sphere’s diffusion directions are uniformly sampled. These
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sub-datasets are denoted as HCP −Ndir.

Algorithm 1 An algorithm for preprocessing data for HCP dataset

An algorithm to generate preprocessed training datasets HCP − 90, HCP − 64, HCP − 32, HCP − 21,
and HCP − 5 by preprocessing DWI images of the HCP dataset.
Step 1: Apply the DTI model fit from the DIPY Python package[166] to each DWI image separately
to create FA, AD, and MD images.
Step 2: Select 100K voxels that are uniformly distributed in the range of (0, 1), excluding 0, from each
DWI image in accordance with their FA score.
Step 3: Obtain 100K tuples of (input, ground-truth), where each tuple contains the ground-truth,
which is a 5 × 5 × 5 voxel patch with 3 × 1 vector per voxel of corresponding FA, AD, and MD scores,
and the input, which is a 5 × 5 × 5 voxel patch with a 90 diffusion directions per voxel. This process
should be repeated for each DWI image.
Step 4: For each input voxel, concatenate the diffusion signal of the neighboring 5 × 5 × 5 patch to
obtain a 125 × 90 matrix.
Step 5: To obtain a 128 × 90 matrix for each input voxel, concatenate the diffusion direction (3 × 90)
with the diffusion signal.
Step 6: To create a 128 × 100 matrix, zero-pad each tuple’s input; the resulting 125 × 3 matrix will be
the ground truth. Let HCP − 90 be the name of the resulting training dataset.
Step 7:Using Qball-based[146, 166] interpolation in the DIPY package, interpolate 64, 32, 21, and 5
directional diffusion signals from the 90-directional input of the HCP − 90 dataset.
Step 8: Create inputs of size 125 × 64, 125 × 32, 125 × 21, and 125 × 5 vectors, as well as ground truth
of size 125 × 3 matrix, by concatenating the diffusion direction with the diffusion signal of each tuple.
Step 9: Each tuple’s input should be zero-padded to create a 128 × 100 matrix.
Step 10: The resulting training datasets for Ndir = {64, 32, 21, 5} should be called to as HCP − 64,
HCP − 32, HCP − 21, and HCP − 5, respectively.

The original HCP − 90, HCP − 64, HCP − 32, HCP − 21, and HCP − 5 images each contained

one million tuples, which we used to train our neural network. It came from a subset of ten DWI

images that had undergone pre-processing with the help of Algorithm 1. From a different set of

5 DWI images, we selected 500K tuples from the same HCP −Ndir datasets for the validation set.

We selected an additional 500K tuples from each of the same HCP −Ndir datasets derived from a

distinct set of 5 images for the testing set. We trained two identical models on the two sets of 10

images each using 20 images from the HCP dataset in order to assure consistency and robustness

of the model. Our neural network uses a swin-transformer block, which is well known for its ability

to identify correlation in input signals, as seen in Figure 3.1. The diffusion signals and the diffusion

directions, as supplementary information, are the input signals in our scenario. Our model took

into account diffusion signals in the adjacent 5 × 5 × 5 patch, in addition to the diffusion signal

within a voxel. This will increase the prediction robustness with minimal computational overhead.

The nonlinearity in the DTI parameter estimation is learned by the swin-transformer block through

matrix multiplication within the attention mechanism.

We performed experiments in the SwinDTI framework, collecting data on diffusion signals from 3D

patches and reformulating them into a 2D matrix. We employed relative position indexing based

on the 3D row-major order to maintain the spatial information of the original 3D patch. The input

of size 16 × 8 × 100, where 16 × 8 is the input size of the outer window and 100 is the input size
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of the channels, is used by each of the five swin-transformer blocks in our model in order. Figure

3.1 illustrates the various inner window and shift sizes of each swin-transformer block, which are

determined through empirical means. It also removes all dependence on the diffusion signals’ order

and directions in the input due to the linear embedding in the swin-transformer block. Three sets

of two dense layers, each with a separate absolute loss and varying scaling, processed the swin

transformer output to adjust to the various ranges of values of the FA, AD, and MD output. Since

the values of all three parameters fall between 0 and 1, the Sigmoid activation was used in the final

layers. The Gelu activation was used in the Swin-transformer block, while the Relu activation was

used in all other layers. We employed the loss function L1 since the ranges for mean diffusivity

(MD), axial diffusivity (AD), and fractional anisotropy (FA) all fall between 0 and 1. Scaling factors

for each output were set to 103, 105, and 105 for FA, AD, and MD, respectively. The model was

trained using only augmentations for 100 epochs, as indicated in Algorithm 1.

3.2.2 Data Preprocessing and Model Training over MICCAI Quad22

Neural Network Training using preprocessed Healthy Control (HC) data: We trained our neural

network on a dataset comprising two million tuples each from HC and HC − 21 obtained from 20

DWI images. To create the validation set, we selected 500K tuples from HC and HC − 21 from a

separate set of 5 images. For the testing set, we also chose another 500K tuples each from HC and

HC − 21 from a different set of 5 images. To ensure the consistency of the model predictions, we

trained two identical models separately on the 30 images in the HC and HC − 21 datasets. The

transformer architecture of our neural network is illustrated in Figure 3.3.

We used the transformer block[5] in our neural network architecture, which is a novel neural

network that has gained recognition for its proficiency in discerning the correlation between

diffusion signals and diffusion directions. By utilizing the attention mechanism’s matrix

multiplication in the transformer block, we anticipate that the non-linearity of the DTI model fit

can be learned. Additionally, we expect that the linear embedding inside the transformer block[5]

will eliminate any dependency on the order of the diffusion signals and their corresponding

directions within the input.

Finally, we passed the transformer output through two dense layers to split the data into three

parts and adjust to their different value ranges. In our implementation, we utilized the Sigmoid

activation in the final layers and the Gelu activation in the transformer layers and Relu activation

in all other layers. We used the L1 loss function with different scaling for each output since the

ranges of fractional anisotropy (FA), axial diffusivity (AD), and mean diffusivity (MD) are different

within the range of 0 to 1.

LossFA = CFA||FAGT − FApredict||1 (3.11)
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LossAD = CAD||ADGT −ADpredict||1 (3.12)

LossMD = CMD||MDGT −MDpredict||1 (3.13)

LossTotal = LossFA + LossAD + LossMD (3.14)

The ground truth of FA is represented by FAGT , the ground truth of AD is represented by

ADGT , and the ground truth of MD is represented by MDGT , in equations 3.11, 3.12, 3.13.

Correspondingly, the scaling factors for losses for FA, AD, and MD are indicated as CFA, CAD,

and CMD, respectively. We have trained our model with 100 epochs. Data augmentation was not

used during the neural network training process. During the training process, we have used the

loss function as indicated by equation 3.14.

FA, AD, and MD volume predictions for Migraine Patient (MP) data: We employed our method to

predict fractional anisotropy (FA), axial diffusivity (AD), and mean diffusivity (MD) scores voxel

by voxel for each individual Migraine volume in MP dataset. Prior to making the predictions,

we have generated diffusion signal in (64 × 4) vector form as input to the model using the same

preprocessing procedure used for training dataset. It is worth noting that we did not perform any

post-processing on the predicted volumes after their generation.

Training: There were 60 healthy control(HC) in this dataset. In the MICCAI Quad22 Challenge

participants received all the diffusion weighted volumes, or 61 directions, as well as a non-diffusion

weighted volume (b = 0). The sampling plan makes it simple to subsample the 61 gradient directions

into 21 gradients.

Test: 50 patients with EM and 50 patients with CM were included in this dataset. The challenge

participants received a subsample consisting of 21 diffusion gradient directions along with each

subject’s baseline volume. The participant was unable to determine if a volume belonged to EM or

CM because the datasets were shuffled. The organizers, not the participants, had access to the full

acquisition with all 61 gradient directions in order to verify the findings.

Since our goal was to evaluate the impact of applying a general machine learning method to increase

the number of diffusion gradient orientations in the statistical relationships between clinical groups,

there were no migraine patients in the training dataset. The goal was to prevent the emergence of

a migraine classifier or a ”migraine-specific” method.

Diffusion MRI Preprocessing Preprocessing was done on the training and test datasets

provided in the challenge to mitigate any bias resulting from the various preprocessing pipelines

used by the various participant groups. The Marchenko-Pastur Principal Component Analysis

(MP-PCA) method of denoising[167], the correction of motion and eddy currents[168], and the B1

field inhomogeneity[169, 170] comprised the dMRI preprocessing. The MRtrix3 program was used

for each of these procedures[171].
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An extraction mask was made from the preprocessed dMRI volumes[172]. Using FSL software’s

ordinary least squares approach, the diffusion tensor (DT) was estimated at the voxels defined

within the brain mask[173]. As contrast to the original study comparing the CM, EM, and HC

groups[126], no potential bias was present in the extraction of the diffusion tensor or its descriptors.

Instead, the FA, MD, and AD maps of the training dataset were obtained using the FSL estimation

methods.

Figure 3.2: Overview of working strategy. Top: Comparative analysis of DTI data processing using 61
and 21 gradient directions, comparing EM to CM based on data acquired with 61 gradient directions.
Bottom: Outline of the challenge task, involving the training of a Deep Learning network using healthy
controls and the utilization of the trained network to estimate parameters from patients acquired with
21 gradient directions. Image Source: MICCAI 2022 Challenge [1] is QuaD22. I participated in an active
part in this challenge as a member of Team 13, which enabled the team to participate successfully.

Task: Quality enhancement Only three DTI-derived metrics are taken into consideration for

the analysis conducted in this study: FA, AD, and MD. After initial investigations with migraine

patients, AD and MD were chosen because they were the ones who were able to identify significant

differences. A additional metric called FA was also computed. Using the migraine dataset that

was acquired with 21 diffusion gradient directions at b = 1000 s/mm2, participants were asked to

estimate these three metrics in an attempt to approximate the parameters of 61 gradient directions

with a similar quality level. Having that in consideration:

1. They trained an AI-based system using the training data set to be able to angularly augment

the dMRI data from 21 to 61 gradient directions. DL methods were advised to ensure the most

accurate representation of the signal and, by extension, the quantitative parameters, such as FA,

MD, and AD.
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Figure 3.3: Proposed model over migraine dataset, in which takes (64 × 4) input vector and produces
(3 × 1) output vector with FA, AD, and MD score

2. Next, using the migraine dataset, the participants used the enhancement method. Regarding

each of the 50 EM and 50 CM subjects, each participant group submitted three volumes (FA, MD,

and AD).

3.2.3 Data Preprocessing and Model Training over NIFD

To improve nonlinearity and reduce parameter count, we incorporate a modified version of window

self-attention in our suggested model. This window self-attention mechanism is an essential part

because it provides various benefits over conventional self-attention mechanisms. We concatenate

the direction vector as part of the input signal rather than implicitly embedding the diffusion

directions using learned weights. This improvement strengthens the non-linearity of the model and

makes it capable of capturing more complex relationships in the input data. Traditionally, self-

attention assigns different triplets to each input position: query, key, and value. On the other hand,

we use window self-attention in our proposed model, where all windows in the same patch receive

the same triplets. By splitting the input matrix into patches and applying spatial relative attention

to each patch independently, this patch-based approach reduces the computational load associated

with spatial relative attention and enables the modeling of long-range spatial relationships in large

images.

Department of Computer Science and Engineering, Shiv Nadar Institution of Eminence, India



DTI parameters estimation using Sparse dMRI Data 37

Figure 3.4: The proposed model over NIFD dataset architecture for neural network training and
prediction.
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Algorithm 2 Preprocessing the data for the proposed model over NIFD dataset

NIFD − 41, NIFD − 21, and NIFD − 5 are the three preprocessed training datasets that are created
as part of the preprocessing algorithm for DWI images from the NIFD dataset.

Step 1: To process each DWI image independently, use the DTI model fitting procedure found in the
DIPY Python package[166]. Six different diffusion components are produced by this process: Dxx, Dxy,
Dyy, Dxz, and Dyz. These components together make up the diffusion tensor.
Step 2: From each DWI image, select 20, 000 voxels by calculating their fractional anisotropy (FA)
score. Zero values should be ignored in voxel selection in order to preserve a uniform distribution
throughout the interval (0, 1).
Step 3: Gather a dataset of 20, 000 pairs of (input, ground-truth) where the input is a 5 × 5 × 5 voxel
patch for each pair. 41 diffusion directions per voxel are characteristics of this patch. The matching
ground-truth component consists of a 5 × 5 × 5 voxel patch, in which each voxel is connected to a 6 × 1
vector that symbolizes the six diffusion components of the diffusion tensor.
Step 4: Combine the diffusion signals from the neighboring 5 × 5 × 5 patch to create a matrix with
dimensions 125 × 41 for each input voxel.
Step 5: For every input voxel, concatenate the diffusion directions (3 × 41) with the diffusion signal to
produce a matrix with dimensions 128 × 41.
Step 6: Apply zero-padding to each tuple’s input to create a 128 × 100 matrix. The corresponding
ground truth is represented by a 125× 6 matrix. NIFD− 41 is the name given to the resulting training
data set.
Step 7: Apply Qball-based interpolation [146, 166] to the 41-directional input from the NIFD − 41
dataset using the DIPY package. Diffusion signals with 41, 21, and 5 directions will be produced by this
process, in that order.
Step 8: To create input vectors with dimensions of 125 × 41, 125 × 21, and 125 × 5, as well as a ground
truth matrix with size 125 × 6, concatenate the diffusion directions and diffusion signals within each
tuple.
Step 9: To create a matrix with dimensions of 128 × 100, apply zero-padding to each tuple’s input.
Step 10:The resulting training datasets are designated as NIFD − 41, NIFD − 21, and NIFD − 5,
which correspond to the respective specific diffusion directions of 41, 21, and 5.
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As a consequence of neighboring windows being deliberately moved using a predetermined stride, our

suggested model which is based on the Swin Transformer architecture creates window overlapping

regions. By allowing tokens to connect with one another even though they are part of separate

windows, this strategic overlap helps to promote inter-token attention. By creating a wider range

of opportunities for reciprocal influence, this dynamic interaction between tokens fosters the growth

of more complex and richer representations.

We have included a novel activation function based on element-wise multiplication as part of our

proposed model. To be more precise, within our system, the values of Dxx, Dyy, and Dzz can only

fall within the range of 0 and 1, while the values of Dxy, Dyz, and Dxz can only fall within the

range of -1 and 1. We used the sigmoid activation function for the first set and the tanh activation

function for the second set to deal with these different ranges. Furthermore, the DWI signals

magnitude and the outputs magnitude D̄ function nonlinearly together. We multiplied the final

outputs by the output of a Sigmoid-activated dense layer on the DWI signal in order to account

for this knowledge. We were able to modulate the estimates output magnitude because to this

innovative method, which also shortened the training period and increased the overall accuracy of

our suggested framework.

We created three preprocessed training datasets, NIFD − 41, NIFD − 21, and NIFD − 5, by

developing an algorithm to preprocess diffusion-weighted imaging (DWI) images from the NIFD

dataset. Specifically, Algorithm 2 [146, 166] describes the preprocessing algorithm.

We trained our neural network using three separate datasets: NIFD − 41, NIFD − 21, and

NIFD − 5 [146, 166]. Each dataset contained 20,000 tuples per image. Following preprocessing

with Algorithm 2, these tuples were obtained from a subset of 24 diffusion-weighted imaging (DWI)

images. We use a Swin-transformer block, which is well-known for its capacity to detect correlations

in input signals [68]. The architecture of our neural network is shown in Figure 3.4. Diffusion signals

and their directions make up the input signals in our scenario, and our model takes into account

both the current voxel diffusion signal and the diffusion signals inside a nearby 5 × 5 × 5 patch.

To improve non-linearity and reduce parameter measure, we incorporate a modified version of

window self-attention in our suggested model. A key component of our model is the window self-

attention mechanism, which has several advantages over conventional self-attention mechanisms.

We concatenate the direction vector as part of the input signal rather than integrating the diffusion

direction using learned weights. This improvement strengthens the non-linearity of the model and

makes it capable of capturing more complex relationships in the input data. Traditionally, self-

attention assigns different triplets to each input position: query, key, and value. On the other hand,

we use window self-attention in our proposed model, where all windows in the same patch receive

the same triplets. Using a patch-based approach, the input image is divided into patches, and each

patch is given distinct spatial relative attention. By using this method, modeling long-range spatial

relationships in large images is made possible while also lessening the computational load associated
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with spatial relative attention.

3.2.4 Data Preprocessing and Model Training over ADNI

We created three preprocessed training datasets, ADNI − 41, ADNI − 21, and ADNI − 5, by

developing an algorithm to preprocess the DWI images from the ADNI dataset. Algorithm 3

provides an overview of the algorithm.

Algorithm 3 Data Preprocessing of Proposed Model over ADNI dataset

The preprocessed training datasets ADNI − 41, ADNI − 21, and ADNI − 5 are produced using the
preprocessing algorithm for the DWI images in the ADNI dataset.

Step 1: Utilize the DTI model fit from the DIPY Python package [166] for every DWI image separately.
This will yield six diffusion components of the diffusion tensor: Dxx, Dxy, Dyy, Dxz, Dyz, and Dzz.
Step 2: From each DWI image, choose 100, 000 voxels that are uniformly distributed within the range
(0, 1), based on their fractional anisotropy (FA) score, excluding zero.
Step 3: Acquire 100, 000 tuples of (input, ground-truth) such that each tuple contains an input 5×5×5
voxel patch with 41 diffusion directions per voxel and the ground-truth is a 5 × 5 × 5 voxel patch with
a 6 × 1 vector per voxel, which expresses the corresponding six diffusion components of the diffusion
tensor.
Step 4: For each input voxel, concatenate the diffusion signals of the adjacent 5 × 5 × 5 patch to create
a 125 × 41 matrix.
Step 5: To obtain a 128 × 41 matrix per input voxel, concatenate the diffusion directions (3 × 41) with
the diffusion signal.
Step 6: The ground truth is represented as a 125 × 6 matrix, and each tuple’s input is zero-padped to
create a 128 × 100 matrix. The training dataset that is produced is called ADNI − 41.
Step 7: Apply the DIPY package to the 41 directional input of the ADNI − 41 dataset and perform
Qball-based interpolation [146, 166] to obtain 41 directional, 21 directional, and 5 directional diffusion
signals.
Step 8: Diffusion directions are concatenated with the diffusion signals of each tuple to produce inputs
of vector sizes 125 × 41, 125 × 21, and 125 × 5, as well as a ground truth matrix of size 125 × 6.
Step 9: To generate a 128 × 100 matrix, zero-pad each tuple’s input.
Step 10: The training datasets that are obtained are denoted ADNI− 41, ADNI−21, and ADNI− 5,
which correspond to the corresponding diffusion directions = 41, 21, 5.

Three separate datasets, ADNI − 41, ADNI − 21, and ADNI − 5, each containing one million

tuples per image, were used to train our neural network. Algorithm 3 was used to preprocess a

subset of 10 DWI images, from which these tuples were obtained. Figure 3.5 shows the architecture

of our neural network, which uses a Swin-transformer block, which is well known for its ability

to detect correlations in input signals. In our scenario, the input signals are diffusion signals plus

diffusion directions, and our model takes into account both the current voxel diffusion signal and

the diffusion signals inside a neighboring patch 5 × 5 × 5.
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Figure 3.5: The proposed model over ADNI dataset architecture for neural network training and
prediction.
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Chapter 4

Results and Discussion

4.1 Experimental findings over HCP

In an experiment, we compared our results to Ground Truth and those obtained with traditional

LLS fitting[4] and 3D U-Net16[33, 34, 69] on four different numbers of diffusion directional signal

(Ndir = 64, 32, 21, 5). In a follow-up experiment, we contrast our predictions with those from

Transformer-DTI[5] on the same data for a diffusion directional signal (Ndir = 5). While 3D U-

Net16[33, 34, 69], which requires an input size of 16 × 16 × 16 patch, used 8.1 million trainable

parameters, the approach we propose only uses 0.66 million. Transformer-DTI[5] employs an input

size of 5 × 5 × 5 patch and 25 million trainable parameters. We trained the model using Adam

optimizer with a batch size of 100 and an initial learning rate of 10−4. When the validation loss

did not go down for an epoch, we reduced the learning rate, and if the validation loss did not

go down for two epochs, we terminated the training. Utilizing an NVIDIA GeForce RTX A4000

GPU, training and validation were performed out. Furthermore, as shown in figures 4.9, 4.10,

and 4.11, we have carried out error analysis on FA, AD, and MD predictions for the entire brain.

We conducted experiments to compare the performance of our proposed model, SwinDTI, with

the 3D U-Net16[33, 34, 69] model and with the similarly comparable LLS fitting[4] model across

various diffusion directions (Ndir = 21, 32, 64). When evaluating quantitative metrics like fractional

anisotropy (FA), axial diffusivity (AD), and mean diffusivity (MD), our results consistently show

that SwinDTI performs better than the 3D U-Net16 model[33, 34, 69] and equally comparable

LLS fitting[4] model. Moreover, we found that SwinDTI outperforms not only the 3D U-Net16

model[33, 34, 69] but also the Transformer-DTI[5] model and similarly good LLS fitting[4] methods,

in particular for the diffusion direction Ndir = 5. These results offer compelling evidence for

the SwinDTI model’s superior ability to capture and analyze diffusion tensor imaging data with

accuracy.

Additionally, we registered the predictions non-linearly to the Dipy framework template[166],
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Figure 4.1: The diffusion directional signal of 64 DWIs was compared using 3D U-Net16, LLS fitting, and
the proposed SwinDTI. Red circles highlight noteworthy areas that show differences from earlier research
findings.

Figure 4.2: The proposed SwinDTI absolute error image, 3D U-Net16, and LLS fitting for 64 DWIs. The
range of the AD and MD scales is 0 to 6 × 10−4, whereas the range of the FA scale is 0 to 0.3
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Figure 4.3: Diffusion directional signal of 32 DWIs is compared with 3D U-Net16, LLS fitting, and the
proposed SwinDTI. Red circles highlight noteworthy areas that show differences from earlier research
findings.

Figure 4.4: The proposed SwinDTI absolute error image, 3D U-Net16, and LLS fitting for 32 DWIs. The
range of the AD and MD scales is 0 to 6 × 10−4, whereas the range of the FA scale is 0 to 0.3
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Figure 4.5: Diffusion directional signal of 21 DWIs is compared with 3D U-Net16, LLS fitting, and the
proposed SwinDTI. Red circles highlight noteworthy areas that show differences from earlier research
findings.

Figure 4.6: The proposed SwinDTI absolute error image, 3D U-Net16, and LLS fitting for 21 DWIs. The
range of the AD and MD scales is 0 to 6 × 10−4, whereas the range of the FA scale is 0 to 0.3
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Figure 4.7: Diffusion directional signal of 5 DWIs is compared with proposed SwinDTI, 3D U-Net16, LLS
fitting, and Transformer-DTI. Red circles highlight noteworthy areas that show differences from earlier
research findings. For each of the five diffusion directions, SwinDTI outperforms the FA measurement
obtained by 3D U-Net16, LLS fitting, and Transformer-DTI. Surprisingly, SwinDTI shows similar
performance to LLS fitting when it comes to AD and MD measurements.

utilizing the JHU DTI-based white-matter atlases template[174] to perform a

region-of-interest(RoI) analysis. Figures4.12–4.17 depict the region-specific predictions of the FA,

AD, and MD scores. This method helps diagnose neurological conditions and provides support

and guidance during surgical procedures. Two-dimensional slices of our predictions for all

diffusion measurements Ndir = 5, 21, 32, 64 are shown in Figures 4.1–4.8, along with the associated

error images. Moreover, for Ndir = 5, the most sparse measurement in our framework, tables 4.1,

4.2, and 4.3 display the mean, median, and standard deviation of errors for our predictions. For

directional diffusion, the Structural Similarity Index (SSIM) score[6] between the Ground Truth

and the predicted quantitative images is displayed in Table 4.4 (Ndir = 5, 21). A key metric for

assessing the accuracy and reliability of the predictions is the SSIM score[6], which offers a

quantitative assessment of the similarity between the two images. A low score suggests that there

may be significant differences between the two images and that the predictions may need more

research or improvement. A high score indicates that the predicted images are similar to the

Ground Truth.

Quantitative Parameter Prediction

For our test dataset, the diffusion tensor parameters are estimated using the proposed Swin-DTI

model. We compare the ground truth parameters derived from the fully sampled data with these

estimated diffusion tensor parameters. Predicting FA, MD, and AD values for every 5×5×5 patch
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Figure 4.8: The proposed SwinDTI absolute error image, 3D U-Net16, and LLS fitting for 5 DWIs. The
range of the AD and MD scales is 0 to 6 × 10−4, whereas the range of the FA scale is 0 to 0.3

Figure 4.9: Boxplot of whole brain FA measurement
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Figure 4.10: Boxplot of whole brain AD measurement

Figure 4.11: Boxplot of whole brain MD measurement
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in a DWI test image is how we proceed about our approach. We take the average prediction to

get the final value because these predictions overlap. This averaging method has improved the

predictions’ robustness and helped minimize artifacts.

Figure 4.12: FA measure boxplot of ROI Anterior corona radiata, causes[2] affecting cerebral white
matter, including ischemic and multiple sclerosis.

Figure 4.13: AD measure boxplot of ROI Anterior corona radiata, causes[2] affecting cerebral white
matter, including ischemic and multiple sclerosis.

Table 4.1: The diffusion direction error for FA measures is Ndir = 5. The least amount of error is bolded.
ROIs Proposed Model 3D U-Net16 LLS fitting method

Mean Median Std Mean Median Std Mean Median Std
Middle cerebellar peduncle 0.074 0.060 0.059 0.093 0.082 0.066 0.085 0.071 0.065
Pontine crossing 0.066 0.055 0.052 0.065 0.057 0.050 0.074 0.062 0.060
Genu of corpus callosum 0.050 0.040 0.042 0.073 0.057 0.060 0.071 0.056 0.060
Cerebral peduncle 0.075 0.060 0.063 0.093 0.087 0.057 0.087 0.075 0.065
Posterior limb of internal 0.071 0.058 0.057 0.106 0.104 0.063 0.088 0.076 0.064
Anterior corona radiata 0.066 0.054 0.053 0.082 0.074 0.057 0.066 0.058 0.048
Cingulum 0.057 0.046 0.046 0.075 0.062 0.057 0.070 0.059 0.055
Uncinate fasciculus 0.061 0.052 0.046 0.058 0.047 0.044 0.063 0.048 0.054
Whole brain 0.039 0.028 0.037 0.068 0.054 0.054 0.085 0.085 0.051

The outcomes of our experiments show that our suggested SwinDTI model works well for diffusion

tensor imaging applications. In the anterior corona radiata and cingulum regions, box plots of
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Figure 4.14: MD measure boxplot of ROI Anterior corona radiata, causes[2] affecting cerebral white
matter, including ischemic and multiple sclerosis.

Figure 4.15: FA measure boxplot of ROI Cingulum, causes[3] Alzheimer’s disease, anxiety disorders,
addiction, depression, and schizophrenia.

Figure 4.16: AD measure boxplot of ROI Cingulum, causes[3] Alzheimer’s disease, anxiety disorders,
addiction, depression, and schizophrenia.
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Figure 4.17: MD measure boxplot of ROI Cingulum, causes[3] Alzheimer’s disease, anxiety disorders,
addiction, depression, and schizophrenia.

Table 4.2: Error (×10−4) of the AD measure for diffusion direction Ndir = 5 . The least amount of error
is bolded.
ROIs Proposed Model 3D U-Net16 LLS fitting method

Mean Median Std Mean Median Std Mean Median Std
Middle cerebellar peduncle 1.059 0.894 0.820 1.518 1.121 1.321 1.196 0.874 1.123
Pontine crossing 0.812 0.670 0.626 1.160 1.052 0.791 0.974 0.817 0.751
Genu of corpus callosum 0.931 0.725 0.815 1.956 1.679 1.436 1.369 1.093 1.113
Cerebral peduncle 1.182 0.891 1.062 2.548 2.552 1.379 1.244 1.062 0.930
Posterior limb of internal 0.891 0.738 0.701 2.268 2.328 1.355 1.113 0.953 0.829
Anterior corona radiata 0.837 0.700 0.641 0.991 0.863 0.715 0.796 0.652 0.627
Cingulum 0.780 0.669 0.580 1.734 1.641 1.100 1.047 0.843 0.835
Uncinate fasciculus 0.795 0.686 0.577 1.776 1.740 0.957 0.999 0.752 0.909
Whole brain 1.136 0.600 1.505 1.955 1.184 2.340 0.934 0.706 0.859
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Table 4.3: Error (×10−4) of the MD measure for the diffusion direction Ndir = 5. The least amount of
error is bolded.
ROIs Proposed Model 3D U-Net16 LLS fitting method

Mean Median Std Mean Median Std Mean Median Std
Middle cerebellar peduncle 0.391 0.321 0.365 1.089 0.974 0.544 0.328 0.278 0.247
Pontine crossing 0.240 0.203 0.184 0.971 0.959 0.309 0.334 0.276 0.261
Genu of corpus callosum 0.401 0.258 0.520 1.244 1.141 0.628 0.406 0.348 0.295
Cerebral peduncle 0.377 0.318 0.248 0.911 0.854 0.334 0.240 0.222 0.118
Posterior limb of internal 0.458 0.316 0.499 1.168 1.121 0.539 0.384 0.319 0.297
Anterior corona radiata 0.228 0.190 0.177 1.083 1.086 0.264 0.369 0.328 0.255
Cingulum 0.271 0.227 0.208 1.578 1.535 0.443 0.400 0.354 0.289
Uncinate fasciculus 0.277 0.240 0.205 1.037 1.053 0.251 0.301 0.255 0.231
Whole brain 0.941 0.313 1.544 2.145 1.305 2.262 0.308 0.240 0.276

the error measures of FA, AD, and MD indicate that SwinDTI performs better than the 3D U-

Net16[33, 34, 69] and equally comparable LLS fitting[4] methods. These regions have been related

to cerebral white matter disorders and diseases, including Alzheimer, anxiety, addiction, depression,

and schizophrenia. Comparing FA, AD, and MD measures for diffusion directions Ndir = 5, the

analysis’s quantitative findings are shown in Tables 4.1, 4.2, and 4.3. Even though Ndir = 5 is an

extreme case that is hardly ever employed in a clinical setting, it is used in the demonstration to

show the accuracy and robustness of the SwinDTI model. SSIM scores[6] were used to measure the

similarity between the ground truth and predicted quantitative images. Our proposed SwinDTI

model, along with three other models (3D U-Net16[33, 34, 69], Transformer-DTI[5], and equally

comparable LLS fitting[4]), were evaluated. A summary of the findings is provided in Table 4.3.

There are several figures and tables that show the experiment results. We present the results of

the proposed SwinDTI model with 64 DWIs diffusion directional signal against the 3D U-Net16[33,

34, 69] and LLS fitting[4] in Figures 4.1, 4.2, 4.9, 4.10, and 4.11. Range for the AD and MD

scales are 0 to 6 × 10−4, and for the FA scale, 0 to 0.3. We present a comparative analysis of the

SwinDTI model (proposed) with 3D U-Net16[33, 34, 69] and LLS fitting[4] for 32 DWIs diffusion

directional signal in Figures 4.3, 4.4,4.9,4.10, and 4.11. The range of the FA scale is still 0 to 0.3,

and the range of the AD and MD scales is 0 to 6 × 10−4. Figures 4.5, 4.6, 4.9, 4.10, and 4.11 show

a detailed comparison of the performance of the 3D U-Net16[33, 34, 69], and LLS fitting[4] using

21 DWIs diffusion directional signal. The proposed SwinDTI model is evaluated using 5 DWIs

diffusion directional signals against three different models: 3D U-Net16[33, 34, 69], LLS fitting[4],

and Transformer-DTI[5]. The results are shown in Figures 4.7, 4.8, 4.9, 4.10, and 4.11. Whole-brain

FA (figure 4.9), AD (figure 4.10), and MD (figure 4.11) measurements are included in the boxplot

analysis.

Figures 4.12, 4.13, and 4.14 display Anterior corona radiata measure (RoI) boxplots of error for

patients with cerebral white matter disorders, such as multiple sclerosis and ischemic stroke,

respectively. According to the findings, SwinDTI outperforms the 3D U-Net16 method[33, 34, 69],

and is on par with LLS fitting[4] in terms of accuracy in capturing the microstructural changes in
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Table 4.4: The SSIM score[6] compares the quantitative images predicted and Ground Truth. Compared
to MD, FA has higher reliability in white matter [7]. The optimum results are shown by the highlighted
values, which are the minimum standard deviation (std) and the maximum values for FA, AD, and MD.
Patient
ID

Proposed Model 3D U-Net16 LLS fitting method Transformer-DTI

Ndir =

5

FA AD MD FA AD MD FA AD MD FA AD MD

103010 0.965 0.972 0.979 0.937 0.951 0.959 0.899 0.981 0.996 0.941 0.957 0.961
103111 0.958 0.968 0.978 0.928 0.939 0.948 0.905 0.980 0.996 0.937 0.952 0.959
103212 0.964 0.973 0.980 0.930 0.951 0.959 0.893 0.981 0.996 0.938 0.957 0.962
103414 0.970 0.977 0.985 0.943 0.943 0.952 0.924 0.983 0.996 0.951 0.964 0.971
103515 0.965 0.972 0.980 0.937 0.946 0.954 0.908 0.980 0.996 0.945 0.961 0.968
Mean 0.964 0.972 0.980 0.935 0.946 0.955 0.906 0.981 0.996 0.942 0.958 0.964
Std 0.004 0.003 0.002 0.006 0.005 0.004 0.011 0.001 0.0001 0.005 0.004 0.005
Patient
ID

Proposed Model 3D U-Net16 LLS fitting method

Ndir =

21

FA AD MD FA AD MD FA AD MD

103010 0.972 0.970 0.972 0.954 0.953 0.956 0.979 0.988 0.990
103111 0.965 0.967 0.969 0.946 0.947 0.952 0.980 0.984 0.986
103212 0.972 0.970 0.972 0.954 0.952 0.955 0.976 0.985 0.987
103414 0.975 0.973 0.975 0.961 0.954 0.956 0.985 0.986 0.988
103515 0.970 0.969 0.970 0.956 0.952 0.955 0.976 0.983 0.985
Mean 0.971 0.970 0.972 0.954 0.951 0.955 0.979 0.985 0.987
Std 0.003 0.002 0.002 0.005 0.002 0.001 0.003 0.001 0.001
Patient
ID

Proposed Model 3D U-Net16 LLS fitting method

Ndir =

32

FA AD MD FA AD MD FA AD MD

103010 0.972 0.979 0.982 0.959 0.974 0.978 0.966 0.995 0.998
103111 0.967 0.977 0.982 0.951 0.971 0.976 0.978 0.995 0.998
103212 0.972 0.978 0.981 0.961 0.977 0.982 0.968 0.995 0.998
103414 0.978 0.984 0.986 0.966 0.974 0.979 0.985 0.996 0.998
103515 0.971 0.977 0.979 0.963 0.976 0.981 0.972 0.995 0.998
Mean 0.972 0.979 0.982 0.960 0.974 0.979 0.974 0.995 0.998
Std 0.003 0.002 0.002 0.005 0.002 0.002 0.007 0.0004 0.0001
Patient
ID

Proposed Model 3D U-Net16 LLS fitting method

Ndir =

64

FA AD MD FA AD MD FA AD MD

103010 0.988 0.988 0.987 0.946 0.958 0.963 0.998 0.999 0.999
103111 0.985 0.987 0.986 0.938 0.953 0.961 0.998 0.999 0.999
103212 0.986 0.986 0.985 0.948 0.960 0.966 0.998 0.999 0.998
103414 0.987 0.988 0.987 0.954 0.961 0.966 0.998 0.999 0.999
103515 0.985 0.985 0.984 0.951 0.961 0.967 0.9987 0.9998 0.999
Mean 0.986 0.986 0.985 0.947 0.958 0.964 0.998 0.999 0.998
Std 0.001 0.001 0.001 0.006 0.003 0.002 0.0003 0.0003 0.0004

this region. The ROI Cingulum’s FA, AD, and MD measure boxplots of error for people with

neurodegenerative and psychiatric disorders and is shown in Figures 4.15, 4.16, and 4.17. When it

comes to accurately representing the microstructural alterations in the area that are connected

with the pathology of these illnesses, the SwinDTI model performs better. The ranges of the ROI
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AD and MD scales are 0 to 6 × 10−4, and 0 to 0.3, respectively, for the ROI FA scale. In

summary, the suggested SwinDTI approach outperforms previous approaches in terms of accuracy

and robustness for DTI-based measurements. The results unequivocally show that SwinDTI can

measure the white matter regions of the brain with accuracy and reliability, which can help with

the diagnosis and treatment of a variety of diseases and disorders of the brain. For the diffusion

direction numbers of Ndir = 21, 32, 64, our suggested model performs better than the 3D

U-Net16[33, 34, 69] and similar comparable LLS fitting[4] models. Moreover, SwinDTI

outperforms the Transformer-DTI[5] models, the LLS fitting[4], and the 3D U-Net16[33, 34, 69]

models specifically for 5 diffusion directions when measuring FA. Notably, in terms of

measurements for AD and MD, SwinDTI performs comparably to LLS fitting[4]. These results

imply that the SwinDTI model has a great potential to enhance the precision and effectiveness of

diffusion tensor imaging, with possible uses in neurological disease diagnosis and treatment

planning.

4.2 Experimental findings over MICCAI Quad22

A slice from a patient with chronic migraine (CM) was used to perform an initial visual evaluation

of the various techniques. The metrics (FA, AD, and MD) that were taken into account were

computed using both the initial data and various AI-enhancement techniques. Visual inspection

indicated that most of the images had a similar overall appearance. No appreciable differences were

found in structural features, despite minor variations in intensity levels.

Comparisons in quality metrics are made between AI-enhanced scalar values (FA, AD, MD) derived

from 21 gradients and the original scalar values calculated from 61 gradients. The structural

similarity index measure (SSIM) and the peak signal-to-noise ratio (PSNR) are computed. ”REF

(21 grad)” denotes metrics directly derived from 21 gradient directions without employing any AI

algorithms. The results show the average of 100 reconstructed volumes, with cases that did not

improve on the reference highlighted in red. When evaluating the quality of reconstructed images in

medical imaging, visual references and different error or noise metrics are frequently used. We can

assess the degree of similarity between the original and reconstructed images through this method.

Thus, we started by calculating two image-based metrics: peak signal to noise ratio (PSNR) and

structural similarity index measure[175]. For each team, the 100 enhanced volumes for the three

metrics (FA, MD and AD) were taken into account in this regard. The same metrics have been

computed using the original data, which were reconstructed from 61 gradient directions. The metric

has only been calculated on a white matter mask, determined for those points where FA > 0.2 with

the FA calculated with 61 gradient directions.

In terms of the SSIM metric, the majority of the techniques demonstrated enhancement or were

on par with the reference. The results obtained by Team 9 are the only ones that suggest a
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notable difference between the reference and the reconstructed signal. Not only that, but Team 13

outperformed the reference by a small margin. Team 9 once more showed a significant departure

from the reference in terms of PSNR, while the other teams showed results that were marginally

better or marginally worse than the reference. With the exception of Team 9, the majority of the

teams’ results showed a high degree of similarity with the original data. In the following sections, we

will investigate whether these results agree with the statistical findings of the clinical investigation.

False positives can have detrimental effects, including misdiagnosis and decreased reliability of

results. They can also have major implications. Because they may restrict the applicability of

these techniques, it is crucial to carefully examine the existence of these results in the studies

conducted with AI-enhanced volumes. The number of voxels with notable variations found by

TBSS for each approach is displayed. The TPs found by the 21-gradient reference are shown in

blue; the TPs found by the 61-gradient reference but not by the 21-gradient reference are shown

in green; and the FPs are shown in red in our color-coding scheme. Each method yields new TPs,

which are represented by values indicated in green. FA finds no significant differences, so for the

sake of simplicity, we only display results for AD and MD.

4.3 Experimental findings over NIFD

We used 54 DWI images from the NIFD dataset for our experiments, 27 of which were from the

Cognitively Normal (CN) group and 27 from the FTD patient group. We used 3 images from each

group for validation and 12 images from CN and FTD patients to train our model. Testing was

carried out on the 12 CN and 12 of the FTD patients that were left. For our experiments, we used

the results of the LLS fitting on NIFD-41 as the ground truth.

We compared the outcomes of our suggested method with LLS fitting and Transformer-DTI in order

to assess its effectiveness. Comparisons between ground truth, the suggested method, and the LLS

fitting for 41 diffusion directions are shown in Figure 4.18. The outcomes show that, in terms

of accurately estimating diffusion tensor parameters, the suggested method is comparable to LLS

fitting. Diffusion measures for 21 diffusion-directed signals are shown in Figure 4.19, and the results

for 5 diffusion-directed signals using the suggested method, LLS fitting and the Transformer-DTI

are shown in Figure 4.20. For 21 diffusion directions (Figures 4.19 and 4.22), our suggested method

outperforms the Transformer-DTI [5] and performs similarly to the LLS fitting [4]. Figures 4.20 and

4.21 show that our model outperforms Transformer-DTI and LLS fitting for 5 diffusion directions,

indicating that it is a useful tool for accurately estimating diffusion measures, particularly when

there are fewer diffusion directions. Figures 4.21 and 4.22, respectively, show error plots of six

diffusion components D̄ for 5 and 21 diffusion directional signals.

In conclusion, the integration of sparse diffusion measures in the proposed

Swin-Transformer-based deep learning framework shows promise as a method for early FTD
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Figure 4.18: Comparison of 41 diffusion directions: Ground truth vs. Proposed method vs. LLS fitting
[4]

Figure 4.19: Comparison of 21 diffusion directions: Ground truth vs. Proposed method vs. LLS fitting
[4] and Transformer-DTI [5]
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Figure 4.20: Comparison of 5 diffusion directions: Ground truth vs. Proposed method vs. LLS fitting
[4] and Transformer-DTI [5]

Figure 4.21: Six diffusion components of diffusion tensor for 5 diffusion directions
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Figure 4.22: Six diffusion components of diffusion tensor for 21 diffusion directions

patient diagnosis. Our framework captures the underlying structural connectivity of the brain,

which is a crucial characteristic in patients with frontotemporal dementia, by incorporating

measures of sparse diffusion. The Swin-Transformer-based deep learning model effectively learns

the complex relationships between brain connectivity patterns and disease status through this

novel approach, enabling early and accurate diagnosis of FTD patients. The findings of this study

support more research into the potential of the framework in extensive clinical trials, as it has the

potential to make a substantial contribution to the diagnosis of neurodegenerative disorders.

Subsequent investigations may also examine the efficacy of the framework in identifying FTD

patients in different age categories, thus expanding its potential users. An exciting opportunity to

improve FTD patients early diagnosis and potentially result in more successful interventions and

better patient care—presents itself with our proposed Swin-Transformer-based deep learning

framework.

4.4 Experimental findings over ADNI

We used 40 DWI images of people from the ADNI dataset for our experiments. 20 images in this set

belong to the cognitively normal (CN) group and the other 20 Mild Cognitive Impairment (MCI)

group. 5 CN and 5 MCI images were chosen to train our model, and three CN and three MCI

images were chosen for validation. Ultimately, 12 CN and 12 MCI images were placed aside for

testing. The ground truth for our experiments has been the result of the fitting of the LLS over

ADNI − 41.
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Figure 4.23: The results obtained from the ground truth, the proposed method, and LLS fitting [4] are
compared, and it is observed that for 41 diffusion directions, the Proposed method shows comparability
with both the ground truth and LLS fitting.

Figure 4.24: We compare the results obtained from the ground truth, the proposed method, LLS fitting
[4], and Transformer-DTI [5]. We find that, for 21 diffusion directions, the Proposed method outperforms
both LLS fitting [4] and Transformer-DTI [5].
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Figure 4.25: We compare results obtained from the ground truth, the proposed method, LLS fitting [4],
and Transformer-DTI [5]. We find that, for 5 diffusion directions, the proposed method outperforms LLS
fitting [4] and Transformer-DTI [5].

Figure 4.26: Six diffusion component of diffusion tensor for 5 diffusion directions
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Figure 4.27: Six diffusion component of diffusion tensor for 21 diffusion directions

We evaluated the effectiveness of our suggested approach by contrasting the outcomes with LLS

fitting and Transformer-DTI. Comparisons between the proposed method, ground truth, and LLS

fitting for 41 diffusion directions are shown in Figure 4.23. The results indicate that the suggested

approach is an equally good LLS fitting method. These results show that the diffusion tensor can

be accurately estimated using the proposed approach. The results of using the suggested method,

LLS fitting, and Transformer-DTI to compare the diffusion measures of 21 diffusion directional

signals are shown in figure 4.24. The results of comparing the diffusion measures of five diffusion-

directed signals using the suggested method, LLS fitting, and Transformer-DTI are shown in figure

4.25. In particular, as shown in figures 4.24 and 4.27, our suggested approach performs better than

Transformer-DTI [5] for diffusion directions of 21 and is comparable to the LLS fitting [4]. According

to the aforementioned figures 4.25 and 4.26, our suggested model performs better for 5 diffusion

directional than both LLS fitting [4] and Transformer-DTI [5]. These findings demonstrate how well

our approach estimates diffusion measures, especially when there are smaller diffusion directions.

The findings are displayed in the error plots of the six diffusion components D̄ for the 5 and 21

diffusion directional signals, respectively, in figures 4.26 and 4.27.

In summary, a promising method for Alzheimer disease early diagnosis is the proposed

Swin-Transformer-based deep learning framework that includes sparse diffusion measures. One

important aspect of Alzheimer disease is the brain’s structural connectivity, which is effectively

captured by the proposed framework through the use of sparse diffusion measures. Based on the

Swin Transformer architecture, we included a planned stride that allows us to strategically

manipulate nearby windows in our suggested model. There were areas where the adjacent

windows overlapped as a result of this intentional adjustment. The purpose of this deliberate
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overlap was to improve intertoken attention. This improvement made it possible for tokens to

connect meaningfully even when they are located in different windows. More opportunities for

mutual influence were opened up by this dynamic interaction between the tokens, which

encouraged the development of more detailed and complex representations. Early diagnosis of

Alzheimer’s disease is now possible thanks to the effective learning of neighboring patterns by the

Swin-Transformer-based deep learning framework. These patterns intrinsically represent complex

associations between brain connectivity and disease status. Further investigations can be

conducted to examine this framework’s potential in extensive clinical trials and to find out how

well it works for identifying Alzheimer’s in various populations.
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Chapter 5

Tract-based spatial

statistics(TBSS) Analysis

Tract-Based Spatial Statistics (TBSS) is a widely used neuroimaging technique to examine

microstructural variations in white matter between different populations. However, TBSS has

severe limitations when used on datasets with a single class, such as the Human Connectome

Project (HCP) dataset.

White matter integrity metrics, which are usually obtained from diffusion-weighted imaging (DWI)

data, are statistically compared voxel-wise in TBSS analysis. TBSS makes it easier to identify

group differences in microstructural properties by aligning the data of individual subjects to a

shared template and performing statistical inference at each voxel along the white matter skeleton.

The fundamental idea behind TBSS is the comparison of white matter properties between various

groups, like patients and controls or different disease cohorts. Because the HCP dataset is composed

of a homogeneous population of healthy individuals, the standard TBSS analysis cannot be applied

because there are no contrasting groups.

5.1 TBSS analysis over MICCAI Quad22

TBSS analysis was performed by Santiago Aja-Fernández et al.[1] on the MICCAI Quad22 Migraine

dataset, which was a component of the MICCAI 2022 Challenge Quad22. Patient data containing

cases of episodic migraine (EM) and chronic migraine (CM) were made available to 14 teams, as

our team of Shiv Nadar Univesity was team number 13. Our team received 39,256 points (the total

number of voxels) with statistically significant differences in mean diffusivity (MD), axial diffusivity

(AD), and fractional anisotropy (FA) across the FA skeleton in the raw TBSS data. The 14 teams

contributions were combined by Santiago Aja-Fernández et al.[1] for TBSS analysis of the Migraine
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dataset. They also provided the quantity of Regions of Interest (ROIs) for every metric in order to

clarify statistically significant differences. Refer to the work of Santiago Aja-Fernández et al.[1] for

a more thorough understanding of this subject.

5.2 TBSS analysis over NIFD

In addition, a t-test analysis was utilized in the research [176] to evaluate the statistical significance

of our findings using the tract-based spatial statistics (TBSS) pipeline. Fractional anisotropy (FA)

metrics were used in the analysis to compare two groups: healthy CN and FTD patients.

Using FNIRT from FSL [177], FA images were registered to the FMRIB-58 template in the MNI

space. Because the white matter skeleton was obtained from a mean FA image with a 0.2 FA

threshold, the data could be statistically interpreted with confidence. Axial and coronal brain slices

with p-values from two sample t-tests highlighting the Cingulum and Uncinate fasciculus regions

are displayed in Figures 5.1 and 5.2. According to previous research, the findings show a strong

correlation between FTD patients and the Cingulum and Uncinate fasciculus regions [3, 178]. With

sparse data, our suggested framework shows a similar relationship and considerably shortens the

scanning time.

Figure 5.1: An axial brain slice showing the Cingulum region; the p-value from the two sample t-test
(df=8) is indicated. Green indicates that the tstat1 hypothesis test is a healthy CN > FTD patient; red
indicates that the tstat2 hypothesis test is a healthy CN < FTD patient.

Changes in the microstructural integrity of these white matter tracts, which are important for a

number of cognitive functions, may be associated with the onset of frontotemporal dementia (FTD).

The number of pixels with p-values outside of confidence intervals for the two diffusion directions (5

Diff. and 21 Diff.) at 95% and 99% confidence intervals is compared in Table 5.1. In contrast to the

LLS fitting and Transformer-DTI methods, which exhibit larger departures from the ground truth,
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Figure 5.2: An illustration of the Uncinate fasciculus region in a coronal brain slice is shown with the
p-value (df=8) of the two sample t-test. Green hue indicates that tstat1-Healthy CN is the hypothesis
being tested. Hypothesis testing tstat2 - Healthy CN < FTD patient, > FTD patient, Red color.

Table 5.1: The Proposed Model, LLS fitting, and Transformer-DTI are examined for the number of pixels
with p-values outside Confidence Intervals (95% and 99%) for the t-statistics (tstat1 and tstat2), where
tstat1 compares Healthy CN > FTD patient and tstat2 compares Healthy CN < FTD patient.

P-Value Ground Truth Proposed Model LLS fitting Transformer-DTI
5 Diff. 21 Diff. 5 Diff. 21 Diff. 5 Diff. 21 Diff.

tstat1, 95 C.I. 15870 9924 14471 13844 18262 9481 17820
tstat2, 95 C.I. 4294 7527 5719 5391 4351 12162 4517
tstat1, 99 C.I. 3591 2418 3564 3585 4836 2510 4866
tstat2, 99 C.I. 837 1702 1450 1061 913 3818 1181
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the results show that our suggested method maintains an equal number of pixels with significant

differences.

5.3 TBSS analysis over ADNI

We used the tract-based spatial statistics (TBSS) pipeline [176] to perform a t-test analysis

comparing two groups (Healthy CN and MCI) based on fractional anisotropy (FA) metrics in

order to further evaluate the statistical significance of our results. Using the FNIRT tool from

FSL [177], FA images were non-linearly registered to the FMRIB-58 template in the Montreal

Neurological Institute (MNI) space, which includes averaged FA maps. A mean FA image

produced with an FA threshold of 0.2 was thinned to identify the white matter skeleton and

distinguish it from the gray matter.

Figure 5.3: An axial brain slice showing the Cingulum region; the p-value from the two sample t-test
(df=22) is indicated. Green color: hypothesis testing tstat1 - Healthy CN > MCI, Red color: hypothesis
testing tstat2 - Healthy CN < MCI.

An exhaustive comparison of the two groups was made possible by this methodical approach, which

also enabled an accurate statistical interpretation of the data. A p-value from a two sample t-test

with 22 degrees of freedom is used to highlight an axial brain slice in figure 5.3 that represents the

Cingulum region. A coronal brain slice representing the Uncinate fasciculus region is highlighted

similarly in Figure 5.4, with a p-value derived from a two-sample t-test with 22 degrees of freedom.

These diagrams offer insightful data regarding the areas of the brain that might be impacted by

the experimental setup and can be further examined in relation to the study’s research question or

hypothesis.

The Cingulum and Uncinate fasciculus are significantly associated with the development of

Alzheimer’s disease, according to the findings of research done by [3, 178]. With sparse data,
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Figure 5.4: Uncinate fasciculus region represented by a coronal brain slice, with a two sample t-test
p-value of (df=22) indicated. Green color: hypothesis testing tstat1 - Healthy CN > MCI, Red color:
hypothesis testing tstat2 - Healthy CN < MCI.

Table 5.2: Pixel count for t-statistics (tstat1 and tstat2) in the proposed model, LLS fitting, and
Transformer-DTI that have p-values outside of the 95% and 99% confidence intervals. There are two
hypotheses: tstat1 (healthy CN > MCI) and tstat2 (healthy CN < MCI).
P-Value Ground Truth Proposed Model LLS fitting Transformer-DTI

5 Diff. 21 Diff. 5 Diff. 21 Diff. 5 Diff. 21 Diff.
tstat1, 95 C.I. 3775 3246 3146 4024 5568 5311 4646
tstat2, 95 C.I. 7586 8154 7188 7836 5683 5259 7228
tstat1, 99 C.I. 618 505 485 741 981 960 860
tstat2, 99 C.I. 1352 1693 1330 1578 917 1012 1184
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Figures 5.3 and 5.4 show similar relationships using our proposed framework, which significantly

reduces scanning time. Essential white matter tracts in the brain, the cingulum and uncinate

fasciculus, are involved in a variety of cognitive functions, such as memory, emotional regulation,

and social behavior. The beginning of Alzheimer’s disease may be associated with changes in the

microstructural integrity of these tracts, according to recent research. P-values for the number of

pixels outside of confidence intervals are shown in Table 5.2. The results for two distinct diffusion

directions—5 Diff. and 21 Diff.—are displayed. In terms of confidence levels, it offers confidence

intervals at 95% (95 C.I.) and 99% (99 C.I.). An equal number of pixels with significant

differences in two groups compared to the ground truth are preserved by the suggested method, as

shown by the results in Table 5.2. On the other hand, a greater number of pixels with notable

differences in two groups are produced by the LLS fitting and Transformer-DTI methods, which

depart even more from the ground truth.
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Chapter 6

Conclusion and Future Directions

6.1 Summary of Research Findings

The SwinDTI technique effectively and robustly estimates diffusion-weighted DTI parameters

(such as FA, AD, and MD) from sparse diffusion-weighted images. the current model possess

ability to predict using as few as five diffusion directions, which is difficult for other state of the

art(SOTA). Enhanced non-linearity, lower computational costs, and better parallelization are

achieved by SwinDTI through the use of window self-attention and shifting mechanisms in the

Swin Transformer architecture. In DTI parameter estimation and structural similarity index on

the HCP Young Adult dataset, SwinDTI outperforms other techniques such as 3D U-Net,

Transformer-DTI, and linear least square fitting. SwinDTI demonstrates that it can detect

microstructural alterations in specific regions associated with neurological conditions and illnesses.

Sparse diffusion measures are used in the proposed Swin-Transformer-based deep learning

framework to diagnose Alzheimer’s disease. It detects significant differences in brain regions

between the groups with mild cognitive impairment and the healthy group, and it estimates DTI

parameters with reduced diffusion directions with accuracy.

An additional proposal utilizing the neural network based on Swin-Transformer aims to diagnose

frontotemporal dementia (FTD). This framework helps distinguish between healthy people and

FTD patients by providing accurate estimates of important DTI parameters. Notable correlations

have been discovered between particular brain regions and FTD patients, which may improve FTD

diagnosis and shorten scanning times.

In another study, the impact of angular resolution on distinguishing between patients with

episodic and chronic migraines is examined in relation to the application of deep learning

techniques to improve the quality of diffusion MRI data in clinical studies. Although the

techniques increased the number of false positives while also improving the detection of group

differences, this suggests that applying AI-based techniques to heterogeneous clinical data may
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carry a risk of generalization. When utilizing AI for clinical study data synthesis or

harmonization, extreme caution is recommended because crucial data could be manipulated or

falsified.

An exact and strong correlation between the diffusion signals and the estimated diffusion tensor

parameters in nearby voxels is provided by the suggested method. Spatial correlation is therefore

an important factor to consider, since the fiber orientation of the brain tissue micro-structures is

not distributed randomly among adjacent voxels. The existing research clearly demonstrates a lack

of studies focusing on spatial correction of nearby voxels[5, 69, 179], which may be related to the

high processing cost of such work.

Interestingly, Transformer-DTI[5] does account for nearby voxels; however, the inclusion of 25

million trainable parameters suggests that computing requirements will increase. Using a

conventional method based on the maximum likelihood estimate (MLE), a Log Euclidean

framework, another formulation based on spatial prior[109] improves the spatial resolutions of

DWI images without changing the number of diffusion directions. The problem with MLE-based

techniques is that they require a lot of repeating calculations for each voxel, which slows down the

estimation process. Compared to conventional convolution neural networks and recurrent neural

networks, the attention-based transformer model is more resilient and performs better at learning

the correlations between elements[67, 68].

The b-values are essential to the diffusion-weighted imaging (DWI) procedure in the proposed

framework. The b-value is a crucial factor that influences how sensitive the DWI sequence is to the

diffusion of water molecules within brain tissues, as Figure 3.1 illustrates. The effect of changing

b-values on the content and quality of the diffusion-weighted images is shown in Figure 3.1. Greater

sensitivity to restricted diffusion is made possible by higher b-values, which makes it possible to

distinguish between various tissue types, such as gray and white matter. In contrast, lower b-values

reveal more about the overall tissue microstructure because they are more sensitive to free diffusion.

In order to provide an accurate representation of the diffusion behavior in the brain, the selection

of b values in the proposed framework is essential. This helps to improve the interpretation of the

values of mean diffusivity (MD), axial diffusivity (AD), and fractional anisotropy (FA). We trained

our developed model with the widely used clinical standard b-value of 1000 s/mm2.

The main contributions using HCP dataset are as follows:

– Large-scale image recognition tasks are the main goal of the Swin Transformer[68]. With the

use of the Swin Transformer block for parameter estimation (FA, AD, and MD), our proposed

method SwinDTI, outperforms in predicting quantitative measurements in sparse data.

– Our proposed model SwinDTI is able to measure FA, AD, and MD simultaneously for a variety

of diffusion directions Ndir = 5, 21, 32, 64.
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– Even with just 5 diffusion directions, SwinDTI shows that it can predict FA, AD, and MD

with reasonable accuracy. This demonstrates how well it can handle these difficult ”ill-posed

problems” by using backpropagation training to obtain internal prior knowledge.

– The proposed framework shows promise in precisely predicting FA, AD, and MD measures in

particular regions of interest (ROIs) associated with various diseases.

The goal was to assess how well deep learning (DL) methods work in improving the quality of

diffusion MRI (dMRI) data for use in clinical settings. The purpose of the research was to determine

whether the application of artificial intelligence (AI) techniques to medical images could lead to

the appearance of false information or the loss of important clinical data. A migraine clinical trial

was conducted, specifically comparing patients with episodic and chronic migraine, to evaluate the

angular resolution of dMRI. White matter analysis results were impacted by the number of gradient

directions; statistically significant differences between groups were significantly reduced when 21

gradient directions were used instead of the original 61. The objective was to apply DL to improve

the three diffusion metrics (FA, AD, and MD) derived from data collected with 21 gradient directions

and a b-value of 1000 s/mm2. The teams had to come from 14 different institutions to complete this

task. Producing outcomes similar to those derived from 61 gradient directions was the aim. Using

Tract-Based Spatial Statistics (TBSS) to compare patients with episodic and chronic migraines, the

results were evaluated using both common image quality metrics. Although most DL techniques

increased the number of false positives, the study’s findings indicate that they also enhanced the

ability to identify statistical differences between groups. The results demonstrated a continuous

growth rate of false positives that was linearly proportional to the number of new true positives.

This underscores the danger of generalizing AI-based tasks when evaluating heterogeneous clinical

cohorts and training on data from a single group. Additionally, several of the methods displayed

notable bias, and they performed differently when trying to replicate the data’s original distribution.

Finally, even though global metrics like peak signal-to-noise ratio or structural similarity seem to

indicate otherwise, great care should be taken when using AI methods for harmonization or synthesis

when processing heterogeneous data in clinical studies. This is because crucial information may be

altered.

The main contributions using MICCAI Quad22 migraine dataset:

– Proposed deep learning framework aids in biomarker-based decision-making for chronic

migraine (CM) and episodic migraine (EM).

– Proposed method predicted better quantitative measures FA, AD and MD compare to

traditional method for 21 diffusion directional signal of chronic migraine and episodic

migraine.

As part of the MICCAI 2022 Challenge Quad22, the MICCAI Quad22 Migraine Dataset was used

in a research investigation led by Santiago Aja-Fernández et al.[1]. This dataset included patient
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information from cases of both chronic migraine (CM) and episodic migraine (EM). It was made

available to 14 teams that took part, including Team 13, which I am a member of. Our team

developed a deep learning framework for the purpose of this research to examine quantitative metrics

related to both EM and CM, including mean diffusivity (MD), axial diffusivity (AD), and fractional

anisotropy (FA). In order to analyze the results, Santiago Aja-Fernández et al. [1] combined the

contributions from each of the 14 teams. They also offered information on the number of Regions

of Interest for each metric, which helped to find statistically significant discrepancies.

SwinTransformer-based deep learning framework was utilized to diagnose the incidence of

Frontotemporal Dementia.By incorporating sparse diffusion measures, our framework effectively

demostrates the underlying structural connectivity of the brain, a critical feature in FTD patients.

Through this approach, the Swin-Transformer-based deep learning model successfully learns the

complex relationships between brain connectivity patterns and disease status, helping in accurate

diagnosis of FTD patients at an early stage.

The main contributions using NIFD dataset are as follows:

– Effectively acquiring spatial correlation in adjacent voxels to enhance the robustness of DTI

parameter estimations.

– Introducing a Framework to Estimate DTI Parameters with Sparse Measurements and

Maintain Comparable Estimate Quality to Dense Measurements.

– The ability of the suggested model’s DTI parameter estimates to generate unique features for

both healthy individuals and FTD patients is demonstrated.

The main contributions using ADNI dataset are as follows:

– A novel training strategy involving shifting window with overlapping strides is used to

effectively learn spatial correlation in neighboring voxels and improve the robustness of

diffusion tensor imaging parameters.

– The proposed method enables quick estimation of DTI parameters from sparse measurements.

– Demonstrated ability to use the proposed framework to measure diffusion parameters and

identify Alzheimer’s disease in its early stages.

6.2 Limitations and Potential Improvements

Even with a sparse set of diffusion-weighted images, the SwinDTI method demonstrates remarkable

accuracy in estimating diffusion tensor imaging (DTI) parameters, such as mean diffusivity (MD),

axial diffusivity (AD), and fractional anisotropy (FA). Its resilience is especially remarkable, since

it can manage different numbers of diffusion directions, even cases with as few as five diffusion

directions, which is difficult for other methods to handle.
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By combining window self-attention and shifting mechanisms, which facilitate effective

parallelization, lower computing costs, and improved non-linearity in parameter estimation,

SwinDTI builds on the advantages of the Swin Transformer architecture. As demonstrated by the

method’s improved structural similarity index on the HCP Young Adult dataset, this design

decision helps it perform better than other approaches like 3D U-Net, Transformer-DTI, and

linear least square fitting.

Additionally, as demonstrated by its ability to capture subtle microstructural alterations within

particular regions of interest linked to a variety of neurological disorders and diseases, SwinDTI

shows promise for use in clinical settings.

To further solidify its performance and applicability, the SwinDTI method may benefit from a few

improvements despite its strengths. For example, investigating the incorporation of multi-scale

feature extraction mechanisms or the integration of additional data augmentation techniques may

enhance its capacity to extract complex structural information. Further development of the

approach may concentrate on improving its robustness in managing data variability and its

generalizability across various datasets, particularly in clinical settings.

Furthermore, it is critical to continuously validate the SwinDTI method across a variety of patient

cohorts and incorporate rigorous validation protocols, given the dynamic nature of neuroimaging

research and the growing complexity of clinical data. Its credibility as a useful tool for the early

diagnosis and monitoring of neurological conditions would be strengthened by this process, which

would also aid in evaluating its reliability in clinical decision-making.

In addition, the incorporation of interpretability measures and explainable AI techniques could

improve the models clinical adoption and trustworthiness, leading to a better understanding of

the underlying neurobiological processes in the context of the proposed Swin-Transformer-based

framework for early diagnosis of Alzheimer’s disease and the deep learning framework for diagnosing

frontotemporal dementia.

The application of deep learning techniques to improve the quality of diffusion MRI data in clinical

studies emphasizes the need to proceed with caution when utilizing AI techniques for data synthesis

or harmonization in heterogeneous clinical datasets. In order to mitigate the risk of potential

misinterpretation or manipulation of crucial clinical information, it would be imperative to develop

customized data validation strategies and strong quality control measures. This would ensure

the reliability and integrity of AI-based findings. To further promote trust and responsible AI-

driven healthcare practices, it is imperative to establish transparency and accountability in the

development and application of AI algorithms within clinical settings.
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6.3 Future Research and Applications

Using sparse diffusion-weighted images, a new technique called SwinDTI shows excellent accuracy

and robustness in estimating DTI parameters such as mean diffusivity (MD), axial diffusivity

(AD), and fractional anisotropy (FA). An important limitation of current methods is overcome by

SwinDTI, which can handle varying numbers of diffusion directions efficiently, even with as few as

5 directions. SwinDTI optimizes non-linearity, minimizes computational cost, and facilitates

efficient parallelization by utilizing the benefits of window self-attention and shifting mechanism in

the Swin Transformer architecture. Using the HCP Young Adult dataset, SwinDTI outperforms

3D U-Net, Transformer-DTI, and linear least square fitting techniques in terms of DTI parameter

estimation and structural similarity index. Microstructural alterations in particular regions of

interest associated with a range of neurological illnesses and disorders can be detected by

SwinDTI.

The mean square error of the results shows that applying AI-based techniques to heterogeneous

clinical data should be done with caution because there is a chance that crucial information may be

changed or misrepresented. The future direction of our work will be focused on addressing problems

with noise-induced robustness, solve crossing-fiber problems, and develop tract-based classification

and localization methods.

6.4 Conclusion

We conclude that our proposed deep learning framework, SwinDTI, based on Swin-Transformers

represents a significant advance in the field of diffusion tensor imaging (DTI). With sparse

diffusion-weighted images, it performs exceptionally well in the estimation of important DTI

parameters, including mean diffusivity (MD), axial diffusivity (AD), and fractional anisotropy

(FA). Crucially, SwinDTI demonstrates its versatility by yielding dependable outcomes with as

few as 5 diffusion directions—an accomplishment that other methods have not been able to

achieve. The use of window self-attention and shifting mechanisms, which improve non-linearity

while lowering computing costs and facilitating effective parallelization, has helped to achieve this

result.

According to findings on the HCP Young Adult dataset, SwinDTI routinely outperforms

well-known techniques like 3D U-Net, Transformer-DTI, and linear least square fitting in

comparison evaluations against them in terms of DTI parameter estimation and structural

similarity index. Beyond parameter estimation, SwinDTI also demonstrates its effectiveness in

capturing microstructural changes in particular regions of interest that are pertinent to a range of

neurological disorders and diseases.

Our framework is demonstrated to be highly accurate in estimating DTI parameters using sparse
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diffusion measures in a related study on early diagnosis of Alzheimer’s disease. Through statistical

analysis, it detects significant differences in brain regions between healthy individuals and those

with mild cognitive impairment, and it handles different diffusion directions with efficiency. Our

approach presents a promising avenue for reducing scanning time and advancing early diagnosis and

treatment of Alzheimer’s disease. These findings have been validated on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset.

As part of an additional investigation, we investigated how deep learning methods might improve

the quality of diffusion MRI data used in clinical trials to identify differences between patients with

episodic and chronic migraines. Based on our research, most approaches lead to a rise in false

positives even though they are effective in enhancing group differentiation. This finding emphasizes

the significance of using AI-based techniques with caution in clinical research, especially when

dealing with heterogeneous data. As a consequence of the harmonization or synthesis process,

critical information must be carefully considered to prevent its compromise or alteration.

In conclusion, our work highlights the difficulties and complexities involved in using AI techniques

in clinical research, while also emphasizing the important contributions made by SwinDTI to the

advancement of DTI parameter estimation and its potential for early diagnosis in neurological

disorders.
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