Hierarchical Riemannian Models for Pointset Shape Representations: Applications in Hypothesis Testing, Object Segmentation and Shape Clustering

> PhD Defense Presentation August 2020 by Saurabh J. Shigwan

Under guidance of **Prof. Suyash P. Awate**

Outline of the Talk

Driving applications

- Hypothesis testing, segmentation, clustering

- Statistical modeling on shapes
 Formulation
- Multigroup hypothesis testing
 Formulation, empirical evaluation
- Shape priors for object segmentation
 - Formulation, empirical evaluation
- Clustering a set of shapes
 - Formulation, empirical evaluation
- Conclusion

Application 1 – Hypothesis Testing

• Data: Object segmentations in multiple cohorts

- Task: Test null hypothesis that two cohorts have no difference in shapes
 - Need to learn a generative model of shape for each cohort / group
 - Visualizing group mean, modes of variation is key to clinical applications

Application 2 – Object Segmentation

 Data: Object segmentations in a group of subjects; test image to be segmented

Need to learn a generative model of shape

Generate segmentation using shape prior

Brain subcortical thalamus segmentation examples

Task:

Brain subcortical image under observation Estimated Shape fitting

Output

Application 3 – Clustering

• Data: Set of object segmentations

Some examples

- Task: Cluster object shapes
 - Needs a generative model of shapes for each group
 - Estimate mean, modes of variation, for each cluster
 - Visualizing cluster mean, modes of variation is key to clinical applications

Estimated means for each cluster

Representation of Shapes

- What is shape ?
 - Object shape is all the geometrical information that remains when location, scale, and rotational effects are filtered out from an object
 - We leverage the notion of Kendall Shape space that has a non-Euclidean structure
- Our representation of shape
 - Finite number of points
 on object boundary with
 triangular mesh

• Group

– Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

• Group

- Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

• Group

- Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

• Group

– Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

 $\{\mu, {\color{black} C}, eta\}$

• Group

– Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

 $\{\mu, C, \beta\}$

• Group

– Data
$$x := \{x_i\}_{i=1}^N$$

- Individual shapes $Y := \{Y_i \in \mathbb{R}^{3J}\}_{i=1}^N$ (latent / hidden random variable)
- Mean μ (unknown)
- Modes of variation C (unknown)
- Smoothness prior β (free parameter)

[A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]

- Group
 - Data x
 - Individual shape y
 - Mean μ
 - Modes of variation ${\cal C}$
 - Smoothness prior β (free parameter)

 $\theta := \{\mu, C\}$ $\max_{\theta} P(x|\theta) := \max_{\theta} \int P(x, Y|\theta) dY$ $:= \max_{\mu, C} \int P(x|Y) P(Y|\mu, C, \beta) dY$

- Shape distribution in Riemannian Space
 - Mean μ
 - Covariance ${\cal C}\,$ in tangent space at mean

$$P(y_i|\mu, C, \beta) := \frac{1}{\eta(C,\beta)} \exp\left(-\frac{d_{\text{Mah}}^2(y_i;\mu, C)}{2} - \frac{\beta}{2} \sum_{j=1}^J \sum_{k \in \mathcal{N}_j} \|y_{ij} - y_{ik}\|_2^2\right)$$

where Mahalanobis distance

$$d_{\mathrm{Mah}}^2(y_i;\mu,C) := \mathrm{Log}_{\mu}^{\mathbb{S}}(y_i)^{\top} C^{-1} \mathrm{Log}_{\mu}^{\mathbb{S}}(y_i)$$

 $\max_{\mu,C} \int P(x|Y) \frac{P(Y|\mu,C,\beta)}{P(Y|\mu,C,\beta)} dY$

• Shape distribution in Riemannian Space

– Mean μ

— Covariance ${\cal C}\,$ in tangent space at mean

 $P(y_i|\mu, C, \beta) := \frac{1}{\eta(C,\beta)} \exp\left(-\frac{d_{\text{Mah}}^2(y_i;\mu,C)}{2} - \frac{\beta}{2} \sum_{j=1}^J \sum_{k \in \mathcal{N}_j} \|y_{ij} - y_{ik}\|_2^2\right)$ where Mahalanobis distance

$$d_{\mathrm{Mah}}^2(y_i;\mu,C) := \mathrm{Log}_{\mu}^{\mathbb{S}}(y_i)^{\top} C^{-1} \mathrm{Log}_{\mu}^{\mathbb{S}}(y_i)$$

 $\max_{\mu,C} \int P(x|Y) \frac{P(Y|\mu,C,\beta)}{P(Y|\mu,C,\beta)} dY$

- Shape distribution in Riemannian Space
 - Mean μ
 - Covariance in tangent space at mean ${\cal C}$
 - Log map in shape space
 - For pointsets a₁,a₂ on unit hypersphere, Log_{a1}(a₂) is the log map of a₂ with respect to a₁

•
$$\operatorname{Log}_{\mathbf{a}_1}^{\mathbb{S}}(\mathbf{a}_2) := \operatorname{Log}_{\mathbf{a}_1}(\mathcal{R}^*\mathbf{a}_2)$$

where, $\mathcal{R}^* := \arg \min_{\mathcal{R}} d_g(\mathcal{R}\mathbf{a}_2, \mathbf{a}_1)$ with \mathcal{R}^* applying rotation to each point within pointset \mathbf{a}_2 ; $d_g(.,.)$ is geodesic distance over unit hypersphere

- Approximate Normal law on hyperspheres
 - Mean
 - Covariance in tangent space at mean

Shape distribution in Riemannian Space

– Mean μ

— Covariance in tangent space at mean ${\cal C}$

$$P(y_i|\mu, C, \beta) :=$$

$$\frac{1}{\eta(C,\beta)} \exp\left(-\frac{d_{\mathrm{Mah}}^2(y_i;\mu,C)}{2} - \frac{\beta}{2} \sum_{j=1}^J \sum_{k \in \mathcal{N}_j} \|y_{ij} - y_{ik}\|_2^2\right)$$

Smoothness prior on shapes

• Neighborhood system $\mathcal{N} := \{\mathcal{N}_j\}_{j=1}^N$, where \mathcal{N}_j gives set of neighbors of j^{th} point in all $y := \{y_i\}_{i=1}^N$

$$\max_{\mu,C} \int P(x|Y) \frac{P(Y|\mu,C,\beta)}{P(Y|\mu,C,\beta)} dY$$

- Joint model on individual shapes and individual data
 - Mean
 - Covariance in tangent space at mean
 - Prior Model $\frac{1}{\eta(C,\beta)} \exp\left(-\frac{d_{\operatorname{Mah}}^2(y_i;\mu,C)}{2} \frac{\beta}{2}\sum_{j=1}^J \sum_{k\in\mathcal{N}_j} \|y_{ij} y_{ik}\|_2^2\right)$
 - -Likelihood $P(x_i|y_i) := \exp(-\Delta(x_i, y_i))/\tau$
 - Dissimilarity measure

$$\Delta(x_i, y_i) := \min_{\mathcal{S}_i} \left(\sum_{j=1}^J (\mathcal{D}_{x_i}(\mathcal{S}_i y_{ij}))^2 + \sum_{l=1}^L \min_j \|\mathcal{Z}_{x_i}^l - \mathcal{S}_i y_{ij}\|_2^2 \right)$$

 $\max_{\mu,C} \int \frac{P(x|Y)}{P(Y|\mu,C,\beta)} dY$

- Joint model on individual shapes and individual data
 - Mean
 - Covariance in tangent space at mean
 - Prior Model $P(y_i|\mu, C, \beta) :=$

$$\frac{1}{\eta(C,\beta)} \exp\left(-\frac{d_{\operatorname{Mah}}^2(y_i;\mu,C)}{2} - \frac{\beta}{2} \sum_{j=1}^J \sum_{k \in \mathcal{N}_j} \|y_{ij} - y_{ik}\|_2^2\right)$$

- Likelihood $P(x_i|y_i) := \exp(-\Delta(x_i,y_i))/\tau$

$$\max_{\theta} \int P(x, Y|\theta) dY \qquad \qquad \theta := \{\mu, C\}$$
$$:= \max_{\mu, C} \int P(x|Y) P(Y|\mu, C, \beta) dY$$

- We solve $\theta^* := \arg \max_{\theta} \int P(x, Y|\theta) dY$ using Expectation Maximization (EM)
- At t^{th} iteration $\theta^t := \{\mu^t, C^t\}$
- Estep: $\mathcal{Q}(\theta; \theta^t) := E_{P(Y|x, \theta^t)}[\log P(x, Y|\theta)]$
- Expectation is analytically intractable
- We use Monte-Carlo approximation $\widehat{\mathcal{Q}}(\theta; \theta^t) \approx \frac{1}{S} \sum_{s=1}^{S} \log P(x, y^s | \theta),$ where $(y^s) \sim P(Y | x, \theta^t)$
- M step:

$$\theta^{t+1} := \arg \max_{\theta} \widehat{\mathcal{Q}}(\theta; \theta^t)$$

$$(y^s) \sim P(Y|x, \theta^t)$$

23

- Leapfrog sampling
 - It maintains a set of state vectors $\, ar w^{\! u}$
 - This set represents independent samples in same distribution $P(\bar{w})$
 - Proposal state is accepted according to Metropolis rule with probability ratio $P(\bar{w}^{u'})/P(\bar{w}^{u})$

 $\bar{w}^{u'} := \operatorname{Exp}_{\bar{w}^t}^{\mathbb{F}}(-\operatorname{Log}_{\bar{w}^t}^{\mathbb{F}}(\bar{w}^u))$

- Data
- Individual shapes
- Group variables
 - Group mean
 - Covariance
 - Smoothness prior (free parameter)
- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- Individual shapes
- Group variables
 - Group mean
 - Covariance
 - Smoothness prior (free parameter)
- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- **Individual shapes**
- Group variables
 - Group mean
 - Covariance
 - Smoothness prior (free parameter)
- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- Individual shapes

- (x_{11}) (x_{12}) (x_{1N_1}) (x_{21}) (x_{22}) (x_{2N_2}) Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]
- $\{\mu, C, \beta\}$ Group variables – Group mean - Covariance $\{Z_1, C_1, \beta_1\}$ $\{Z_2, C_2, \beta_2\}$ $\{Z_M, C_M, \beta_M\}$ - Smoothness prior (free parameter) Population (Y_{1N_1}) (\tilde{Y}_{12}) (Y_{2N_2}) (Y_{22}) (Y_{11}) $(\hat{Y}_{21}),$ (Y_{M1}) (Y_{M2}) variables (x_{M1}) (x_{M2})

 (Y_{MN_M})

 (x_{MN_M})

- Data
- Individual shapes
- Group variables
 - Group mean
 - Covariance
 - Smoothness prior (free parameter)
- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- Individual shapes
- Group variables

- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- Individual shapes
- Group variables
 - Group mean
 - Covariance
 - Smoothness prior (free parameter)
- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

- Data
- Individual shapes
- Group variables

- Population variables
- Used for hypothesis testing [SJ Shigwan, SP Awate, 2016 MICCAI]

• With $\theta := \{\mu, C, \{C_m\}_{m=1}^M\}$ as parameter and Y and Z as random variables

 $P(x, Y, Z|\theta) := \prod_{m=1}^{M} \prod_{i=1}^{N_M} P(x_{mi}|Y_{mi}) P(Y_{mi}|Z_m, C_m, \beta_m) P(Z_m|\mu, C, \beta)$

• With $\theta := \{\mu, C, \{C_m\}_{m=1}^M\}$ as parameter and Y and Z as random variables

 $P(x, Y, Z|\theta) := \prod_{m=1}^{M} \prod_{i=1}^{N_M} \frac{P(x_{mi}|Y_{mi})}{P(Y_{mi}|Z_m, C_m, \beta_m)} P(Z_m|\mu, C, \beta)$

• With $\theta := \{\mu, C, \{C_m\}_{m=1}^M\}$ as parameter and Y and Z as random variables

 $P(x, Y, Z|\theta) := \prod_{m=1}^{M} \prod_{i=1}^{N_M} P(x_{mi}|Y_{mi}) \frac{P(Y_{mi}|Z_m, C_m, \beta_m)}{P(Z_m|\mu, C, \beta)} P(Z_m|\mu, C, \beta)$

• With $\theta := \{\mu, C, \{C_m\}_{m=1}^M\}$ as parameter and Y and Z as random variables

 $P(x, Y, Z|\theta) := \prod_{m=1}^{M} \prod_{i=1}^{N_M} P(x_{mi}|Y_{mi}) P(Y_{mi}|Z_m, C_m, \beta_m) \frac{P(Z_m|\mu, C, \beta)}{P(Z_m|\mu, C, \beta)}$

- We solve $\theta^* := \arg \max_{\theta} \iint P(x, Y, Z|\theta) dY dZ$ using Expectation Maximization (EM)
- At t^{th} iteration $\theta^t := \{\mu^t, C^t, \{C_m^t\}_{m=1}^M\}$
- Estep: $\mathcal{Q}(\theta; \theta^t) := E_{P(Y,Z|x,\theta^t)}[\log P(x,Y,Z|\theta)]$
- Expectation is analytically intractable
- We use Monte-Carlo approximation $\widehat{Q}(\theta; \theta^t) \approx \frac{1}{S} \sum_{s=1}^{S} \log P(x, y^s, z^s | \theta),$ where $(y^s, z^s) \sim P(Y, Z | x, \theta^t)$
- M step:

$$\theta^{t+1} := \arg \max_{\theta} \widehat{\mathcal{Q}}(\theta; \theta^t)$$
- Null hypothesis: Given 2 groups of data A and B are from the same distribution
- We do permutation testing to test null hypothesis of equality of two group distribution in shape space
 - Permutation test is non-parametric, robust to type-1 errors
- Proposed test statistic *T* to measure differences between two shape distributions

$$T := \frac{1}{N_A} \sum_{i=1}^{N_A} d_{\text{Mah}}^2(y_{Ai}; z^B, C^B) + \frac{1}{N_B} \sum_{i=1}^{N_B} d_{\text{Mah}}^2(y_{Bi}; z^A, C^A)$$

- Null hypothesis: Given 2 groups of data A and B are from the same distribution
- We do **permutation testing** to test null hypothesis of equality of two group distribution in shape space
 - Permutation test is non-parametric, robust to type-1 errors
- Proposed test statistic *T* to measure differences between two shape distributions

$$T := \frac{1}{N_A} \sum_{i=1}^{N_A} d_{\text{Mah}}^2(y_{Ai}; z^B, C^B) + \frac{1}{N_B} \sum_{i=1}^{N_B} d_{\text{Mah}}^2(y_{Bi}; z^A, C^A)$$

- Null hypothesis: Given 2 groups of data A and B are from the same distribution
- We do **permutation testing** to test null hypothesis of equality of two group distribution in shape space
 - Permutation test is non-parametric, robust to type-1 errors
- Proposed test statistic *T* to measure differences between two shape distributions

$$T := \frac{1}{N_A} \sum_{i=1}^{N_A} d_{\text{Mah}}^2(y_{Ai}; z^B, C^B) +$$

$$\frac{1}{N_B} \sum_{i=1}^{N_B} d^2_{\text{Mah}}(y_{Bi}; z^A, C^A)$$

- Null hypothesis: Given 2 groups of data A and B are from the same distribution
- We do **permutation testing** to test null hypothesis of equality of two group distribution in shape space
 - Permutation test is non-parametric, robust to type-1 errors
- Proposed test statistic *T* to measure differences between two shape distributions

$$T := \frac{1}{N_A} \sum_{i=1}^{N_A} d_{\text{Mah}}^2(y_{Ai}; z^B, C^B) +$$

$$\frac{1}{N_B} \sum_{i=1}^{N_B} d^2_{\text{Mah}}(y_{Bi}; z^A, C^A)$$

Results on Anatomical Data

- Data from 2 groups of bones in humans
 - Group 1(Males) and Group 2(Females)
 - Each group has 15 individuals
 - Manually segmented images, imperfect segmentations

Capitate

Hamate

41

Evaluation - Baseline

- ShapeWorks [Cates 2017]
 - 3D pointset-based framework for shape modeling
 - Does not employ hierarchical model
 - Forces point locations (within shape) to object boundary
 - Does not enforce shape smoothness and shape alignment during model fitting

[Cates 2017] Joshua Cates, Shireen Elhabian, Ross Whitaker. "Shapeworks: particlebased shape correspondence and visualization software." Statistical Shape and Deformation Analysis. Academic Press, 2017. 257-298

Group means z_1, z_2

Variation around mean of group-1

Ours

Mean shape z_1

ShapeWorks

46

Population mean μ with Cohen's d effect size

Ours

47

- Permutation test
 - Test statistic does not follow standard probability distribution
 - Infer distribution using permutation test
- Hypothesis testing results
 - Our method give p-value 0.13 and Shapeworks give p-value 0.3
 - Our method more confident about rejecting null hypothesis that given two groups are from same distribution, than Shapeworkss

- Shape model provides shape mean and covariance matrix
- Eigenvectors of covariance matrix could act as basis for shape distribution in shape space
- We have designed a novel objective function for finding optimized segmentation

- Data
 - Object segmentations in a training set. Test image.

- Task
 - Learning a generative model of shape
 - Estimating segmentation using shape prior

- Similarity measure between a feature F of image I and shape surface y
 - Shape surface *y*
 - $S \circ y$ = similarity transform of shape surface y
 - $\mathcal{B}(\cdot)$ = binarized volume for shape y
 - $L_x \in \{0,1\}$ be label at voxel x
 - 1 = object's interior
 - 0 = object's exterior
 - $-P_{\text{DNN}}(L|I,\theta)$ = distribution trained using DNN with weight parameters θ $\log P_{\rm DNN}(l_x =$

-15

-20

-25

- PCA based shape representation with prior
 - $\Lambda := \{\lambda_k\}_{k=1}^K = \text{Top } K \text{ eigenvalues of covariance matrix } C$
 - $V := \{v_k\}_{k=1}^K = \text{Top } K \text{ eigenvectors of covariance matrix } C$
 - Any point y in shape space, $y := \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k)$
 - $-\{w_k \in \mathbb{R}\}_{k=1}^K$ are top K basis coefficients
 - τ is weighting parameter to sparsity prior and ζ is normalizing constant

Regularizing
prior on
coefficients
$$\{w_k \in \mathbb{R}\}_{k=1}^{K}$$

 $P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k))$
 $:= \zeta \exp(-\tau \sum_{k=1}^{K} |w_k| / \sqrt{\lambda_k})$

- Log-posterior PDF of object shape y $\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | S, w, \mu, \Lambda, V, \theta, I)$
 - $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) +$
 - $(1 \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

Log-posterior PDF of object shape y

 $\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | \mathcal{S}, w, \mu, \Lambda, V, \theta, I)$

- $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) +$
 - $(1 \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

Log-posterior PDF of object shape y

$$\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | \mathcal{S}, w, \mu, \Lambda, V, \theta, I)$$

 $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) + (1 - \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) - \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

• Log-posterior PDF of object shape y

$$\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | \mathcal{S}, w, \mu, \Lambda, V, \theta, I)$$

- $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) +$
 - $(1 \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

• This sum of multiplications is nothing but sum of log-probabilities of overlapping voxels.

Log-posterior PDF of object shape y

$$\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | \mathcal{S}, w, \mu, \Lambda, V, \theta, I)$$

- $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) +$
 - $(1 \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

• This is equivalent term for background voxels.

58

- Log-posterior PDF of object shape y $\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | S, w, \mu, \Lambda, V, \theta, I)$
 - $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1|\theta, I) +$
 - $(1 \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0|\theta, I) \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

• This last term is log of regularizing prior on basis coefficients.

• Log-posterior PDF of object shape \mathcal{Y}

 $\log P(y = \operatorname{Exp}_{\mu}(\sum_{k=1}^{K} w_k v_k) | \mathcal{S}, w, \mu, \Lambda, V, \theta, I)$

 $:= \sum_{x \in \mathcal{X}} \mathcal{B}(\mathcal{S} \circ y)_x \log P_{\text{DNN}}(l_x = 1 | \theta, I) + (1 - \mathcal{B}(\mathcal{S} \circ y)_x) \log P_{\text{DNN}}(l_x = 0 | \theta, I) - \tau \sum_{k=1}^K |w_k| / \sqrt{\lambda_k}$

- Optimization of objective function (log-posterior PDF)
 - Calculating gradient is complex
 - Represent all parameters as set of independent scalars
 - Do parameter update by local unidirectional interval search for next update iteratively till convergence

Segmentation Results: Subcortical Brain ⁶⁰ Structures

- Data from 30 human individuals (small number)
 - 30 human subjects
 - Low-quality expert segmentations
 - Actual MRI images for segmentation is available

Segmentation Results: Subcortical Brain ⁶¹ Structures

- Experiment
 - Data: Brain MRI image with object segmentations
 - Baselines
 - U-Net: 3D U-Net [Brox 2015 MICCAI]
 - SR-Unet: Shape regularized Unet [Ravishankar 2017 MICCAI]
 - **Unet+SW**: U-Net coupled with shape prior learned from ShapeWorks [Cates 2017 Stat. Shape Deformation Analysis]
 - MA: Multiatlas segmentation using nonlinear nonparametric diffeomorphic registration
 - Comparison between estimated and true segmentations
- Evaluation metrics
 - Dice Similarity Coefficient (DSC)
 - Inter-surface distance
 - Histogram of nearest neighbor distances between surface pointsets of both images

Segmentation Results: Caudate

Segmentation Results: Thalamus

Clustering using hierarchical Riemannian Shape model

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

 $\{z_1, C_1, \beta_1, w_1\}$

 γ_{21}

 x_1

 $\{\mu, C, \beta\}$

 $\gamma_2 M$

 $[x_2]$

 $(\{z_2, C_2, \beta_2, w_2\})...(\{z_M, C_M, \beta_M, w_M\})$

(3M)

 x_N

 x_3

 $N2 \gamma_1$

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

NM

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

γ_{N1}

 $\{z_1, C_1, \beta_1, w_1\}$

 γ_{21}

 x_1

 $\{\mu, C, \beta\}$

 γ_{2M}

 $[x_2]$

 $\{z_2, C_2, \beta_2, w_2\}$)... $\{z_M, C_M, \beta_M, w_M\}$

(3M

 x_N

 x_3

 $N2 \gamma_1$

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior m
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

NM

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

$$\begin{array}{c} \mathbf{S} \\ (\mu, C, \beta) \\ (\mu,$$

$$\bar{\nu} := \{\nu_n \in \{1, 2, \cdots, M\}\}_{n=1}^N$$

 γ_{N1}

 $\{z_1, C_1, \beta_1, w_1\}$

 γ_{21}

 x_1

 $\{\mu, C, \beta\}$

Y32

 γ_{2M}

 (x_2)

 $\{z_2, C_2, \beta_2, w_2\}$)... $\{z_M, C_M, \beta_M, w_M\}$

(3M)

 x_N

 x_3

 $N2 \gamma_1$

75

NM

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ_{11}
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

- Data
- Individual shapes
- Cluster variables
 - Cluster mean
 - Covariance
 - Smoothness prior γ
 - Mixture weights
 - Membership
 - Cluster labels
- Population variables

$$\begin{array}{c} \sum_{n=1}^{\infty} \left\{ \mu, C, \beta \right\} \\ = S \\ \left\{ z_1, C_1, \beta_1, w_1 \right\}_{\gamma_{N1}} \left\{ z_2, C_2, \beta_2, w_2 \right\} \\ (z_1, C_1, \beta_1, w_1) \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N2} \\ \gamma_{N2} \\ \gamma_{N2} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N1} \\ \gamma_{N2} \\ \gamma_{N1} \\ \gamma_{N$$

 $\bar{\nu} := \{\nu_n \in \{1, 2, \cdots, M\}\}_{n=1}^N$

77

• With **Z** and $\theta := \{\mu, C, \overline{C}, \overline{w}\}$ as parameters,

 $\max_{\mathbf{z},\theta} P(\mathbf{x}|\mathbf{z},\theta) P(\mathbf{z}|\theta) = \max_{\mathbf{z},\theta} \int P(\mathbf{x},\mathbf{Y},\bar{\nu}|\mathbf{z},\theta) P(\mathbf{z}|\theta) d\mathbf{Y} d\bar{\nu}$

• Optimize using MC-EM

 $\theta := \{\mu, C, \bar{C}, \bar{w}\}$

 $\prod_{n=1}^{N} \sum_{m=1}^{M} \int P(x_n | Y_n) P(Y_n | \nu_n = m, z_m, C_m)$ $P(\nu_n = m | \theta) P(\mathbf{z} | \mu, C, \beta) dY_n$

Sampling using Leapfrog in Shape Space

 $\prod_{n=1}^{N} \sum_{m=1}^{M} \int P(x_n | Y_n) P(Y_n | \nu_n = m, z_m, C_m)$ $P(\nu_n = m | \theta) P(\mathbf{z} | \mu, C, \beta) dY_n$

- Simulating data from 3 groups of 3D ellipsoids
 - Groups
 - 32 ellipsoids each
 - 2 axes lengths fixed to 30
 - 3rd axis length varies from
 10 to 17 in group 1
 16 to 24 in group 2
 23 to 30 in group 3

- Introduce random perturbations / bumps on surface
- Evaluated clusters based on ground truth
- Compared our results with VBMixPCA [Gooya et.al., TPAMI 2018]

82

 Accuracy of clustering is calculated between true labels and estimated labels

83

Cluster means

Clustering Evaluation Simulated Data Principle mode of Variation around z₁

Our method 84

Cluster-1 mean z₁

Clustering Evaluation Simulated Data Principle mode of Variation around z₂

Our method 85

VBMix PCA

Principle mode of Variation around z_3

86

Our

PCA

Conclusion

- Proposed a novel hierarchical generative model for statistical shape analysis using point distribution model, in which pointsets lie in Kendall shape space
- Handles noisy segmentations
- Evaluated this framework for hypothesis testing
- Proposed Bayesian object segmentation using statistical shape prior, which extends deep neural nets and give improved segmentation
- Proposed hierarchical shape clustering framework based on Riemannian mixture component

Thank You