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Outline of the Talk
• Driving applications

– Hypothesis testing, segmentation, clustering

• Statistical modeling on shapes

– Formulation

• Multigroup hypothesis testing

– Formulation, empirical evaluation

• Shape priors for object segmentation

– Formulation, empirical evaluation

• Clustering a set of shapes

– Formulation, empirical evaluation

• Conclusion
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Application 1 – Hypothesis Testing
• Data: Object segmentations in multiple cohorts

• Task: Test null hypothesis that two cohorts have 
no difference in shapes

– Need to learn a generative model of shape for each 
cohort / group

– Visualizing group mean, modes of variation is key to 
clinical applications

Male carpal-bone 
examples

Female carpal-bone 
examples

3



Application 2 – Object Segmentation
• Data: Object segmentations in a group of subjects;

test image to be segmented

• Task: 
– Need to learn a generative model of shape

– Generate segmentation using shape prior

Brain subcortical thalamus 
segmentation examples

Generative 
Shape Model

Shape Prior for 
Segmentation

Brain subcortical 
image under 
observation

Estimated Shape 
fitting

Output
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Application 3 – Clustering
• Data: Set of object segmentations

• Task: Cluster object shapes

– Needs a generative model of shapes for each group 

• Estimate mean, modes of variation, for each cluster

– Visualizing cluster mean, modes of variation is key to 
clinical applications

Some 
examples

Estimated means 
for each cluster
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Representation of Shapes
• What is shape ?

– Object shape is all the geometrical information that 
remains when location, scale, and rotational effects are 
filtered out from an object

– We leverage the notion of Kendall Shape space that has 
a non-Euclidean structure

• Our representation of shape

– Finite number of points 
on object boundary with 
triangular mesh
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Statistical Model on Shapes
• Group

– Data

– Individual shapes                             

 (latent / hidden random variable)

– Mean       (unknown)

– Modes of variation      (unknown)

– Smoothness prior 
(free parameter)

[ A Gaikwad, SJ Shigwan, SP Awate, 2015 MICCAI]
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• Shape distribution in Riemannian Space

– Mean

– Covariance      in tangent space at mean

 where Mahalanobis distance

Statistical Model on Shapes
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Statistical Model on Shapes
• Shape distribution in Riemannian Space

– Mean

– Covariance in tangent space at mean

– Log map in shape space

• For pointsets a1,a2 on unit hypersphere,
                 is the log map of a2 with respect to a1

•

where,                                                      with 
     applying rotation to each point within pointset a2 ;
              is geodesic distance over unit hypersphere
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Statistical Model on Shapes
• Approximate Normal law on hyperspheres

– Mean

– Covariance in tangent space at mean

– Log map
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Statistical Model on Shapes
• Shape distribution in Riemannian Space

– Mean

– Covariance in tangent space at mean

– Smoothness prior on shapes

• Neighborhood system                            ,where      gives set of 
neighbors of jth point in all

yij

yik
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Statistical Model on Shapes
• Joint model on individual shapes

and individual data

– Mean

– Covariance in tangent space at mean

– Prior Model

– Likelihood

• Dissimilarity measure 
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Where       is similarity 
transform applied to 

Statistical Model on Shapes
• Dissimilarity measure

Distance Transform
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Statistical Model on Shapes
• Joint model on individual shapes

and individual data

– Mean

– Covariance in tangent space at mean

– Prior Model

– Likelihood
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Statistical Model on Shapes
• We solve                                                                using 

Expectation Maximization (EM)

• At tth iteration                                       

• E step:

• Expectation is analytically intractable

• We use Monte-Carlo approximation  

• M step:
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Statistical Model on Shapes

• Leapfrog sampling

– It maintains a set of state vectors 

– This set represents independent samples
in same distribution

– Proposal state  is accepted 
according to Metropolis rule
with probability ratio 
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Modeling Multigroup Shape Data
• Data

• Individual shapes

• Group variables
– Group mean 

– Covariance

– Smoothness prior
(free parameter)

• Population 
variables

• Used for 
hypothesis
testing [SJ Shigwan, SP Awate, 2016 MICCAI]
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Hierarchical Generative Model

• With                                           as parameter and
    and     as random variables
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Hierarchical Generative Model
• We solve                                                                     

using Expectation Maximization (EM)

• At tth iteration                                       

• E step:

• Expectation is analytically intractable

• We use Monte-Carlo approximation  

• M step:
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Hypothesis Testing
• Null hypothesis: Given 2 groups of data A and B are 

from the same distribution

• We do permutation testing to test null hypothesis 
of equality of two group distribution in shape space

– Permutation test is non-parametric, 
robust to type-1 errors

• Proposed test statistic T to measure differences 
between two shape distributions
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Results on Anatomical Data
• Data from 2 groups of bones in humans

– Group 1(Males) and Group 2(Females)

• Each group has 15 individuals

• Manually segmented images, imperfect segmentations

Courtesy of Kevin E. Burroughs, MD 
CapitateHamate
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Evaluation - Baseline
• ShapeWorks [Cates 2017]

– 3D pointset-based framework for shape modeling

– Does not employ hierarchical model

– Forces point locations (within shape) to object boundary

– Does not enforce shape smoothness and shape 
alignment during model fitting

[Cates 2017]  Joshua Cates, Shireen Elhabian, Ross Whitaker. "Shapeworks: particle-
based shape correspondence and visualization software." Statistical Shape and 

Deformation Analysis. Academic Press, 2017. 257-298 
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Results on Anatomical Data-Hamate

Group means z1, z2 

Ours ShapeWorks
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Results on Anatomical Data-Hamate 

Ours

ShapeWorks

Variation around 

mean of group-1

Mean shape z1 
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Results on Anatomical Data-Hamate 

Group Variance C1 Group Variance C2

Eigenvalues spectra comparison
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Results on Anatomical Data-Hamate 

Population mean μ with Cohen’s d effect size

Ours ShapeWorks
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Results on Anatomical Data-Hamate 
• Permutation test

– Test statistic does not follow standard probability 
distribution

– Infer distribution using permutation test

• Hypothesis testing results

– Our method give p-value 0.13 and Shapeworks give p-
value 0.3

– Our method more confident about rejecting null 
hypothesis that given two groups are from same 
distribution, than Shapeworkss
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Segmentation using shape prior
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Segmentation using shape prior
• Shape model provides shape mean and covariance 

matrix

• Eigenvectors of covariance matrix could act as basis 
for shape distribution in shape space

• We have designed a novel objective function for 
finding optimized segmentation
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• Data
– Object segmentations in a training set. Test image.

• Task 
– Learning a generative model of shape
– Estimating segmentation using shape prior

Segmentation using shape prior

Brain subcortical 
thalamus 
segmentation in 
training set

Generative 
Shape 
Model

Shape Prior 
for 
Segmentation

Brain 
subcortical 
image

Fitted 
Shape Output 

Segmenta
tion

DNN 
learned 
Model for 
voxel 
intensity 
from 
training set

DNN 
probability 
map of 
image under 
observation
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Segmentation using shape prior
• Similarity measure between a feature F of image I 

and shape surface 

– Shape surface 

–           = similarity transform of shape surface  

–         = binarized volume for shape 

–                          be label at voxel

• 1 = object’s interior

• 0 = object’s exterior

–                    = distribution trained using DNN
with weight parameters 
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Segmentation using shape prior
• PCA based shape representation with prior

–            = Top K eigenvalues of covariance matrix 

–               = Top K eigenvectors of covariance matrix 

– Any point in shape space, 

–                      are top K basis coefficients 

–     is weighting parameter to sparsity prior and     is 
normalizing constant

Regularizing 
prior on 
coefficients 
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• Log-posterior PDF of object shape  

Segmentation using shape prior
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Segmentation using shape prior
• Log-posterior PDF of object shape  
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Segmentation using shape prior
• Log-posterior PDF of object shape  
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Segmentation using shape prior
• Log-posterior PDF of object shape  

• This sum of multiplications is nothing but sum of 
log-probabilities of overlapping voxels.
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• Log-posterior PDF of object shape  

• This is equivalent term for background voxels.

Segmentation using shape prior
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• Log-posterior PDF of object shape  

• This last term is log of regularizing prior on basis 
coefficients.  

Segmentation using shape prior
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• Log-posterior PDF of object shape  

• Optimization of objective function (log-posterior 
PDF)

– Calculating gradient is complex

– Represent all parameters as set of independent scalars

– Do parameter update by local unidirectional interval 
search for next update iteratively till convergence

Segmentation using shape prior
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Segmentation Results: Subcortical Brain 
Structures

• Data from 30 human individuals (small number)

– 30 human subjects

– Low-quality expert segmentations

– Actual MRI images for segmentation is available

Caudate 

Slice

Caudate 

3D
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Segmentation Results: Subcortical Brain 
Structures

• Experiment
– Data: Brain MRI image with object segmentations

– Baselines
• U-Net: 3D U-Net [Brox 2015 MICCAI]

• SR-Unet: Shape regularized Unet [Ravishankar 2017 MICCAI]

• Unet+SW: U-Net coupled with shape prior learned from ShapeWorks 
[Cates 2017 Stat. Shape Deformation Analysis]

• MA: Multiatlas segmentation using nonlinear nonparametric 
diffeomorphic registration

– Comparison between estimated and true segmentations

• Evaluation metrics
– Dice Similarity Coefficient (DSC)

– Inter-surface distance
• Histogram of nearest neighbor distances between surface pointsets 

of both images
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Segmentation Results: Caudate
62



Segmentation Results: Thalamus
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Clustering using hierarchical 
Riemannian Shape model
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Modeling Clusters of Shapes 
• Data

• Individual shapes

• Cluster variables

– Cluster mean 

– Covariance

– Smoothness prior

– Mixture weights

– Membership

– Cluster labels

• Population 
variables
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Hierarchical Shape Clustering

• With     and                                  as parameters,
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Hierarchical Shape Clustering

• With                                    as parameter,
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Hierarchical Shape Clustering

• Optimize using MC-EM 
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Hierarchical Shape Clustering

• Sampling using Leapfrog in Shape Space
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Clustering Evaluation Simulated Data
• Simulating data from 3 groups of 3D ellipsoids

– Groups

• 32 ellipsoids each

• 2 axes lengths 
fixed to 30

• 3rd axis length 
varies from 
10 to 17 in group 1
16 to 24 in group 2
23 to 30 in group 3

• Introduce random perturbations / bumps on surface

• Evaluated clusters based on ground truth

• Compared our results with VBMixPCA [Gooya et.al., TPAMI 2018]

Group1 

instance
Group2 

instance

Group3 

instance
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Clustering Evaluation Simulated Data
• Accuracy of clustering is calculated between true 

labels and estimated labels

Ground truth Corrupted 

mimicking 

human errors

Boxplot of 

accuracy over 5 

noisy instances

Population 

mean estimate 

of our method
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Clustering Evaluation Simulated Data

Cluster 

means z1
z2 z3

Our 

method

VBMix

PCA
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Clustering Evaluation Simulated Data
Principle mode of Variation around z1

Cluster-1 mean z1

Our 

method

VBMix

PCA
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Clustering Evaluation Simulated Data

Our 

method

VBMix

PCA

Principle mode of Variation around z2

Cluster-2 mean z2
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Clustering Evaluation Simulated Data

Our 

method

VBMix

PCA

Principle mode of Variation around z3

Cluster-3 mean z3

86



Conclusion
• Proposed a novel hierarchical generative model for 

statistical shape analysis using point distribution 
model, in which pointsets lie in Kendall shape space

• Handles noisy segmentations

• Evaluated this framework for hypothesis testing

• Proposed Bayesian object segmentation using 
statistical shape prior, which extends deep neural 
nets and give improved segmentation

• Proposed hierarchical shape clustering framework 
based on Riemannian mixture component 
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Thank You
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